UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Instituto de Física

Mecânica Quântica I

Lista 1

1. Seja P_{ab} a probabilidade de encontrar uma partícula no intervalo (a < x < b) no tempo t. Mostre que

$$\frac{dP_{ab}}{dt} = J(a,t) - J(b,t)$$

onde

$$J(x.t) = \frac{i\hbar}{2m} \left(\psi \frac{\partial \psi^*}{\partial x} - \psi^* \frac{\partial \psi}{\partial x} \right)$$

J é a corrente de probabilidade.

2. Uma partícula em um poço infinito quadrado de largura a tem como função de onda inicial a mistura dos dois primeiros estados estacionários:

$$\Psi(x,0) = A[\psi_1(x) + \psi_2(x)]$$

- (a) Normalize $\Psi(x,0)$.
- (b) Encontre $\Psi(x,t)$ e $|\Psi(x,t)|^2$. Expresse $|\Psi(x,t)|^2$ como uma função senoidal do tempo. Para simplificar, faça $\omega \equiv \pi^2 \hbar/2ma^2$
- (c) Encontre $\langle x \rangle$. Note que $\langle x \rangle$ oscila com o tempo, qual é a amplitude de oscilação? Essa amplitude poderia ser maior que a/2?
- (d) Encontre $\langle p \rangle$.
- (e) Se você medir a energia desta partícula, que valores poderia encontrar e com que probabilidades? Encontre $\langle H \rangle$. Como se compara com E_1 e E_2 ?
- 3. Encontre o valor esperado da energia potencial do n-ésimo estado do oscilador harmônico.
- 4. Ainda para o oscilador harmônico, para o estado fundamental e para o primeiro estado excitado:
 - (a) Encontre $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$ e $\langle p^2 \rangle$.
 - (b) Verifique o princípio de incerteza para esses estados.
 - (c) Calcule $\langle T \rangle$ e $\langle V \rangle$ para os dois estados. A soma é o que você esperava encontrar?
- 5. Uma partícula livre tem acomo função de onda inicial

$$\Psi(x,0) = Ae^{-a|x|}$$

- (a) Normalize $\Psi(x,0)$.
- (b) Encontre $\phi(k)$.
- (c) Construa $\Psi(x,t)$ na forma integral.
- (d) Discuta os casos limite: a muito grande e a muito pequeno.

- 6. Considere o potencial duplo delta $V(x) = -\alpha[\delta(x+a) + \delta(x-a)]$, onde $a \in \alpha$ são constantes positivas.
 - (a) Esboce este potencial.
 - (b) Quantos estados ligados este potencial possui? Encontre todas as energias permitidas para $\alpha = \hbar^2/ma$ e para $\alpha = \hbar^2/4ma$.
 - (c) Esboce as funções de onda.
- 7. Uma partícula de massa m e energia E > 0 se aproxima de um potencial degrau

$$V(x) = \begin{cases} 0 & \text{se } x \le 0 \\ -V_0 & \text{se } x > 0 \end{cases}$$

- (a) Qual a probabilidade dela ser refletida se $E = V_0/3$?
- (b) Quando um nêutron livre entra em um núcleo, ele experimenta uma queda abrupta na energia potencial, passando de V=0 fora do núcleo, para $V\approx -12$ MeV dentro do mesmo. Suponha que um nêutron emitido por um evento de fissão tenha energia cinética 4 MeV e bata no núcleo. Qual a probabilidade dele ser absorvido e dar início a outro evento de fissão?
- 8. Considere uma partícula de massa m em um poço quadrado infinito de largura a.
 - (a) Mostre que essa partícula retorna a seu estado inicial após um tempo $T=4ma^2/\pi\hbar$, isto é, $\Psi(x,T)=\Psi(x,0)$ para qualquer estado. Qual a interpretação física deste tempo T?
 - (b) Qual é o período clássico para uma partícula de energia E pressa neste mesmo potencial?
 - (c) Para que energia os periódos clássico e quântico são iguais?