Percolação

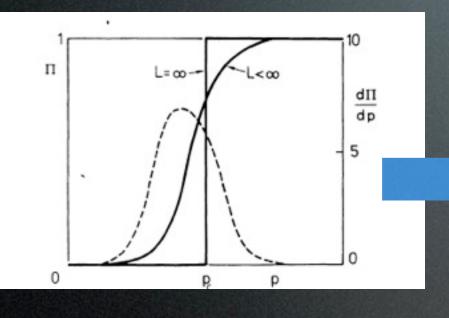
Métodos computacionais II 2010

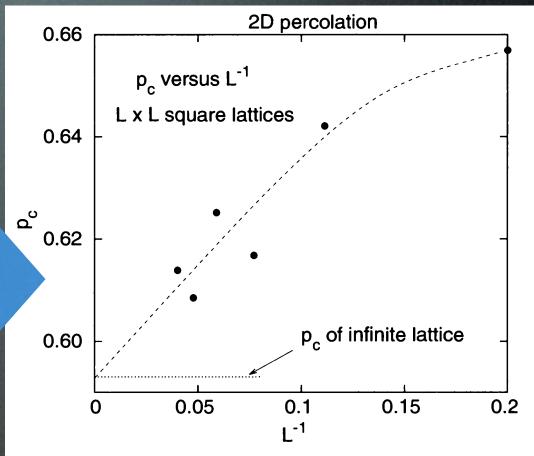
Transição de Percolação

- p<p_c → Não há Spanning Cluster
- $p>p_c \rightarrow Existe um Spanning Cluster$
- Existência ou não de SC → Transição de fase de 2a ordem
 - É o Spanning Cluster que leva à transição metal isolante do exemplo!
- p_c é a probabilidade de ocupação dos sítios para qual aparece um SC na rede infinita
- Na rede finita há uma probabilidade finita de termos um SC para p<pc.

Percolação na rede finita

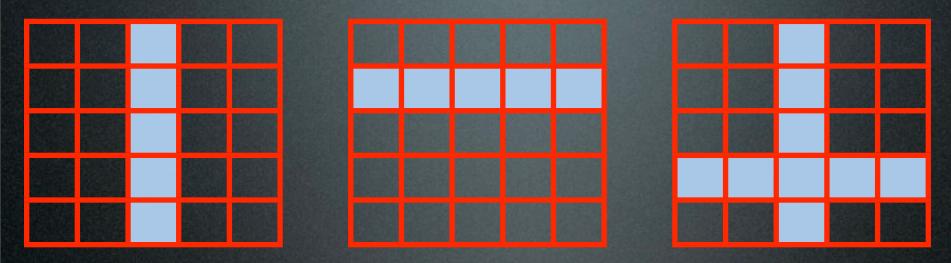
Prob. de aparecimento de um SC numa rede finita





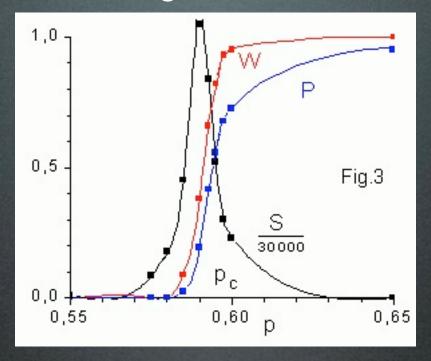
- \bullet Podemos calcular $p_c(L)$ e extrapolar resultado para L infinito
- Finite-size scaling

S. Cluster na rede finita



- Definição de S. Cluster é arbitrária
- ullet $p_c(L)$ é valor médio de p para primeira vez que o SC aparece
- Qualquer critério leva ao mesmo valor de p_c ao extrapolarmos $p_c(L=\infty)$

Outras Quantidades



- W(p) is the probabilidade de aparecimento de um spanning cluster em um sistema finito
- P(p) é a probabilidade de que um sítio pertença ao SC ou a densidade do SC, já que
 - P(p) = (num de sítios no SC)/ num de sítios ocupados
 - S(p) é o tamanho médio dos clusters excluindo o SC

Criticalidade

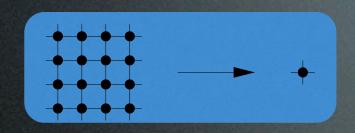
- Pé parametro de ordem:
- P≠0 para p>pc e P=0 para p<pc

Perto da transição..
$$P(p) \propto (p-p_c)^{eta}$$

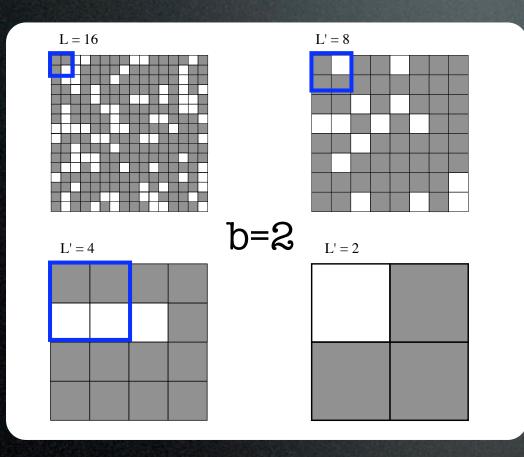
- Em p=p_c,S. Cluster é fractal já que densidade tende a zero quando L tende a infinito
- Transição de fase geométrica
- Com outras quantidades, podemos mostrar que $P(p) \propto L^{eta/
 u}$
- Outro finite-size scaling!

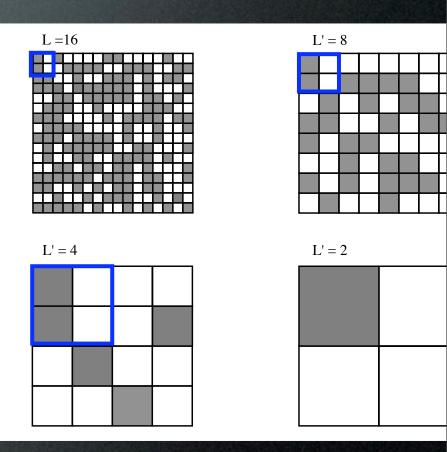
Quantity	Functional form	Exponent	d=2
Percolation			
order parameter	$P_{\infty} \sim (p - p_c)^{\beta}$	eta	5/36
mean size of finite clusters	$S(p) \sim p - p_c ^{-\gamma}$	γ	43/18
connectedness length	$\xi(p) \sim p - p_c ^{-\nu}$	ν	4/3
			/

Grupo de renormalização



Utilizar mesma regra global para definir se célula 2x2 tem SC.





•
$$p'=R(p)=p^4+4p^3(1-p)+2p^2(1-p)$$

- Soma das probabilidades de todas as configurações de SC na célula 2x2
- (1-p) é a prob. do sítio estar vazio
- Pontos fixos: p*=R(p*)
- p*=0, p*=1, p*=0.6180
- Pode ser usado p/ encontrar expoentes

Catalogando clusters

- Iniciar com rede vazia.
- Varrer a rede
 - Para cada sítio varrido:
 - sorteio de r. Se r<p, ocupa sítio
 - verifica vizinho tiver já está catalogado.
 - se sim, segue mesmo label do vizinho
 (1)
 - se não, utiliza novo label m

catalogando..

- verifica vizinho tiver já está catalogado.
 - se sim, segue mesmo label do vizinho (l)
 - se não, utiliza novo label m
- caso vizinhos tenham labels distintos, fazer link entre labels (vetor links)
 - ex: link(m)=n
- Se mesmo label atingiu extremidades da rede, temos um SC