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Transição de Percolação

• p<pc ➙ Não há Spanning Cluster

• p>pc ➙ Existe um Spanning Cluster

• Existência ou não de SC ➙ Transição de fase de 2a 
ordem

• É o Spanning Cluster que leva à transição metal 
isolante do exemplo!

• pc é a probabilidade de ocupação dos sítios para qual 
aparece um SC na rede infinita

• Na rede finita há uma probabilidade finita de termos 
um SC para p<pc.  
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Percolação na rede finita
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•Podemos calcular pc(L) e extrapolar resultado para L infinito
•Finite-size scaling

Text

Prob. de aparecimento de um SC 
numa rede finita
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S. Cluster na rede finita

•Definição de S. Cluster é arbitrária
•pc(L) é valor médio de p para primeira vez que o SC 
aparece
•Qualquer critério leva ao mesmo valor de pc ao 
extrapolarmos pc(L=∞) 
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Outras Quantidades

• W(p) is the probabilidade de aparecimento de um 
spanning cluster em um sistema finito 

• P(p) é a probabilidade de que um sítio pertença ao SC ou a 
densidade do SC, já que

• P(p) = (num de sítios no SC)/ num de sítios ocupados 

• S(p) é o tamanho médio dos clusters excluindo o SC
11
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• P é parametro de ordem:

• P≠0 para p>pc e P=0 para p<pc

• Perto da transição..

• Em p=pc ,S. Cluster é fractal já que densidade tende a 
zero quando L tende a infinito

• Transição de fase geométrica

• Com outras quantidades, podemos mostrar que

• Outro finite-size scaling!

Criticalidade
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P (p) ⇥ (p� pc)�

P (p) � L�/⇥
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which defines the critical exponent γ. The common critical exponents for percolation are summa-
rized in Table 13.1. For comparison, the analogous critical exponents of a magnetic critical point
also are shown.

Quantity Functional form Exponent d = 2 d = 3
Percolation
order parameter P∞ ∼ (p − pc)β β 5/36 0.4
mean size of finite clusters S(p) ∼ |p − pc|−γ γ 43/18 1.8
connectedness length ξ(p) ∼ |p − pc|−ν ν 4/3 0.9
cluster numbers ns ∼ s−τ p = pc τ 187/91 2.2
Ising model
order parameter M(T ) ∼ (Tc − T )β β 1/8 0.32
susceptibility χ(T ) ∼ |T − Tc|−γ γ 7/4 1.24
correlation length ξ(T ) ∼ |T − Tc|−ν ν 1 0.63

Table 13.1: Several of the critical exponents for the percolation and magnetism phase transitions
in d = 2 and d = 3 dimensions. Ratios of integers correspond to known exact results. The critical
exponents for the Ising model are discussed in Chapter ??.

Because we can simulate only finite lattices, a direct fit of the measured quantities ξ, P∞, and
S(p) to their assumed critical behavior for an infinite lattice would not yield good estimates for
the corresponding exponents ν, β, and γ (see Problem 13.9b). The problem is that if p is close
to pc, the extent of the largest cluster becomes comparable to L, and the nature of the cluster
distribution is affected by the finite size of the system. In contrast, for p far from pc, ξ(p) is
small in comparison to L and the measured values of ξ, and hence the values of other physical
quantities, are not appreciably affected by the finite size of the lattice. Hence for p ≪ pc and
p ≫ pc, the properties of the system are indistinguishable from the corresponding properties of a
truly macroscopic system (L → ∞). However, if p is close to pc, ξ(p) is comparable to L and the
behavior of the system differs from that of an infinite system. In particular, a finite lattice cannot
exhibit a true phase transition characterized by divergent physical quantities. Instead, ξ and S
reach a finite maximum at p = pc(L).

The effects of the finite size of the system can be made more quantitative by the following
argument. Consider for example, the critical behavior (13.14) of P∞. As long as ξ is much less
than L, the power law behavior given by (13.14) is expected to hold. However, if ξ is comparable
to L, ξ cannot change appreciably and (13.14) is no longer applicable. This qualitative change in
the behavior of P∞ and other physical quantities occurs for

ξ(p) ∼ L ∼ |p − pc|−ν . (13.16)

We invert (13.16) and write

|p − pc| ∼ L−1/ν . (13.17)

The difference |p− pc| in (13.17) is the “distance” from the critical point at which “saturation” or
finite size effects occur. Hence if ξ and L are approximately the same size, we can replace (13.14)
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Grupo de renormalização
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Figure 13.10: An example of a b = 4 cell used on the square lattice. The cell contains b2 sites
which are rescaled to a single supersite after a renormalization group transformation.

preserve the main features of the original lattice and hence its connectedness (and its symmetry),
we assume that a renormalized site is occupied if the original group of sites spans the cell. We
adopt the vertical spanning criterion for convenience. The effect of performing a renormalization
transformation on typical percolation configurations for p above and below pc is illustrated in
Fig. 13.11 and Fig. 13.12 respectively. In both cases, the effect of the successive transformations
is to move the system away from pc. We see that for p = 0.7, the effect of the transformations
is to drive the system toward p = 1. For p = 0.5, the trend is to drive the system toward
p = 0. As we discuss in the following, we can associate pc with an unstable fixed point of the
renormalization transformation. Of course, because we began with a finite lattice, we cannot
continue the renormalization transformation indefinitely.

Program rg implements a visual interpretation of the renormalization group. The program
divides the screen into four windows with the original lattice in the first window and three renormal-
ized lattices in windows 2 through 4. In Program site we represented an occupied site at lattice
point x,y as a filled circle of unit diameter centered about the point (x, y). In contrast, Program
rg represents an occupied site at x,y as a filled box whose lower left corner is at x − 1, y − 1.
Problem 13.10. Visual renormalization group
Use Program rg with L = 32 to estimate the value of the percolation threshold. For example,
confirm that for small p, e.g., p = 0.4, the renormalized lattice almost always renormalizes to
a nonspanning cluster. What happens for p = 0.8? How can you use the properties of the
renormalized lattices to estimate pc?

Although a visual implementation of the renormalization group allows us to estimate pc, it
does not allow us to estimate the critical exponents. In the following, we present a renormaliza-
tion group method that allows us to obtain pc and the critical exponent ν associated with the
connectedness length. This analysis follows closely the method presented by Reynolds et al. (see
references).

The implementation of a renormalization group method consists of two parts: (i) an average
over the underlying variables together with a specification of the variables that determine the state
of the renormalized configuration, and (ii) a parameterization of the renormalized configuration in
terms of the original parameters and possibly others. We adopt the same average as before, i.e.,
we replace the bd sites within a cell of linear dimension b by a single site that represents whether
or not the original lattice sites span the cell. The second step is to determine which parameters
specify the new configuration after the averaging. We make the simple approximation that each
cell is independent of all the other cells and is characterized only by the probability p′ that the cell
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L = 16 L' = 8

L' = 4 L' = 2

Figure 13.11: A percolation configuration generated at p = 0.7. The original configuration has
been renormalized three times by transforming cells of four sites into one new supersite. What
would be the effect of an additional transformation?

is occupied. The renormalization transformation between p and p′ reflects the fact that the basic
physics of percolation is connectedness, because we define a cell to be occupied only if it contains
a set of sites that span the cell. If the sites are occupied with probability p, then the cells are
occupied with probability p′, where p′ is given by a renormalization transformation or a recursion
relation of the form

p′ = R(p). (13.20)

The quantity R(p) is the total probability that the sites form a spanning path.
An example will make the formal relation (13.20) more clear. In Fig. 13.13, we show the seven

vertically spanning site configurations for a b = 2 cell. The probability p′ that the renormalized
site is occupied is given by the sum of the probabilities of all spanning configurations:

p′ = R(p) = p4 + 4p3(1 − p) + 2p2(1 − p)2. (13.21)

In general, the probability p′ of the occupied renormalized sites is different than the occupation
probability p of the original sites. For example, suppose that we begin with p = p0 = 0.5. After a
single renormalization transformation, the value of p′ obtained from (13.21) is p1 = p′ = R(p0 =
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L =16

L' = 4 L' = 2  

L' = 8

Figure 13.12: A percolation configuration generated at p = 0.5. The original configuration has
been renormalized three times by transforming blocks of four sites into one new site. What would
be the effect of an additional transformation?

0.5) = 0.44. If we perform a second renormalization transformation, we have p2 = R(p1) = 0.35. It
is easy to see that further transformations drive the system to the fixed point p = 0. Similarly, if we
begin with p = p0 = 0.7, we find that successive transformations drive the system to the fixed point
p = 1. This behavior is qualitatively similar to what we observed in the visual renormalization
group.

To find the nontrivial fixed point associated with the critical threshold pc, we need to find the
special value of p such that

p∗ = R(p∗). (13.22)

For the recursion relation (13.21), we find that the solution of the fourth degree equation for p∗

yields the two trivial fixed points, p∗ = 0 and p∗ = 1, and the nontrivial fixed point p∗ = 0.61804
which we associate with pc. This calculated value of p∗ for b = 2 should be compared with the
estimate pc = 0.5927.

To calculate the critical exponent ν, we recall that all lengths are reduced on the renormalized
lattice by a factor of b in comparison to the lengths in the original system. Hence the connectedness

Utilizar mesma regra global para 
definir se célula 2x2 tem SC.

b=2
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• p’=R(p)=p4+4p3(1-p)+2p2(1-p)

• Soma das probabilidades de todas as 
configurações de SC na célula 2x2 

• (1-p) é a prob. do sítio estar vazio 

• Pontos fixos: p*=R(p*)

• p*=0, p*=1, p*=0.6180

• Pode ser usado p/ encontrar expoentes
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Catalogando clusters

• Iniciar com rede vazia.

• Varrer a rede

• Para cada sítio varrido:

• sorteio de r. Se r<p, ocupa sítio 

• verifica vizinho tiver já está catalogado.

• se sim, segue mesmo label do vizinho 
(l)

• se não, utiliza novo label m

16
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catalogando..
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• verifica vizinho tiver já está catalogado.

• se sim, segue mesmo label do vizinho (l)

• se não, utiliza novo label m

• caso vizinhos tenham labels distintos, 
fazer link entre labels (vetor links)

• ex: link(m)=n

• Se mesmo label atingiu extremidades da 
rede, temos um SC 
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