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PROBLEMS

11-1.

11-2.

11-3.

114.

11-5.

11-6.

11-7.

11-8.

11-9.

11-10.

Calculate the moments of inertia 1;, k, and I for a homogeneous sphere of radius
Rand mass M. (Choose the origin at the center of the sphere.)

Calculate the moments of inertia 1}, I, and J for a homogeneous cone of mass
Mwhose heightis & and whose base has a radius R. Choose the x3-axis along the
axis of symmetry of the cone. Choose the origin at the apex of the cone, and
calculate the elements of the inertia tensor. Then make a transformation such
that the center of mass of the cone becomes the origin, and find the principal
moments of inertia.

Calculate the moments of inertia I, &, and I for a homogeneous ellipsoid of mass
M with axes’ lengths 2a > 25 > 2c.

Consider a thin rod of length /and mass m pivoted about one end. Calculate the
moment of inertia. Find the point at which, if all the mass were concentrated, the
moment of inertia about the pivot axis would be the same as the real moment of
inertia. The distance from this point to the pivot is called the radius of gyration.

(a) Find the height at which a billiard ball should be struck so that it will roll with
no initial slipping. (b) Calculate the optimum height of the rail of a billiard table.
On what basis is the calculation predicated?

Two spheres are of the same diameter and same mass, but one is solid and the
other is a hollow shell. Describe in detail a nondestructive experiment to deter-
mine which is solid and which is hollow.

A homogeneous disk of radius R and mass M rolls without slipping on a horizontal
surface and is attracted to a point a distance d below the plane. If the force of at-
traction is proportional to the distance from the disk’s center of mass to the force
center, find the frequency of oscillations around the position of equilibrium.

A door is constructed of a thin homogeneous slab of material: it has a width of 1
m. If the door is opened through 90°, it is found that on release it closes itself in 2
s. Assume that the hinges are frictionless, and show that the line of hinges must
make an angle of approximately 3° with the vertical.

A homogeneous slab of thickness a is placed atop a fixed cylinder of radius R
whose axis is horizontal. Show that the condition for stable equilibrium of the
slab, assuming no slipping, is R> a/2. What is the frequency of small oscillations?
Sketch the potential energy Uas a function of the angular displacement 6. Show
that there is a minimum at 6 = 0 for R> a/2 but not for R< a/2.

A solid sphere of mass M and radius R rotates freely in space with an angular ve-
locity w about a fixed diameter. A particle of mass m, initially at one pole, moves
with a constant velocity valong a great circle of the sphere. Show that, when the par-
ticle has reached the other pole, the rotation of the sphere will have been retarded
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11-11.

11-12.

11-13.

11-14.

11-15.

11-16.
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a=orl1- |—2M
2M + bm

where T is the total time required for the particle to move from one pole to the
other.

by an angle

A homogeneous cube, each edge of which has a length /, is initially in a position of
unstable equilibrium with one edge in contact with a horizontal plane. The cube
is then given a small displacement and allowed to fall. Show that the angular ve-
locity of the cube when one face strikes the plane is given by

w2=A%(\/§— l)

where A = 3/2 if the edge cannot slide on the plane and where A = 12/5 if slid-
ing can occur without friction.

Show that none of the principal moments of inertia can exceed the sum of the
other two.

A three-particle system consists of masses m; and coordinates (x;, xo, x3) as follows:
my = 3m, (b0, b)
me = 4m, (b, b, —b)
mg = 2m, (—b 5 0)

Find the inertia tensor, principal axes, and principal moments of inertia.

Determine the principal axes and principal moments of inertia of a uniformly
solid hemisphere of radius » and mass m about its center of mass.

If a physical pendulum has the same period of oscillation when pivoted about ei-
ther of two points of unequal distances from the center of mass, show that the
length of the simple pendulum with the same period is equal to the sum of sepa-
rations of the pivot points from the center of mass. Such a physical pendulum,
called Kater’s reversible pendulum, at one time provided the most accurate way
(to about 1 part in 10°) to measure the acceleration of gravity.* Discuss the advan-
tages of Kater’s pendulum over a simple pendulum for such a purpose.

Consider the following inertia tensor:

, 1 )
* §(A+B) —(A—B) 0

{|}=%(A—B) Z(A+B) 0

0 0 C

\ /

*First used in 1818 by Captain Henry Kater (1777-1835), but the method was apparently suggested
somewhat earlier by Bohnenberger. The theory of Kater’s pendulum was treated in detail by
Friedrich Wilhelm Bessel (1784-1846) in 1826.
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11-17.

11-18.

11-19.

11-20.

11-21.

Perform a rotation of the coordinate system by an angle 6 about the xs-axis.
Evaluate the transformed tensor elements, and show that the choice § = 7/4 ren-
ders the inertia tensor diagonal with elements A, B, and C.

Consider a thin homogeneous plate that lies in the x;-x, plane. Show that the in-
ertia tensor takes the form

A -C 0
{Bh=4-C B 0
0 0 A+ B

If, in the previous problem, the coordinate axes are rotated through an angle 6
about the x3-axis, show that the new inertia tensor is

A —=C 0
{} =<-0C B’ 0
0 0 A'+PF

where

A’ = Acos?26 — Csin 20 + Bsin26

B = Asin?6 + Csin 20 + B cos?2 6
1 .
c = Ccos20—§(B—A)sm20

and hence show that the x- and x,-axes become principal axes if the angle of rota-

tion is
1 2C
6 = —tan™!
g an (B—A)

Consider a plane homogeneous plate of density p bounded by the logarithmic spi-
ral r = ke*® and the radii § = 0 and § = 7. Obtain the inertia tensor for the origin
at r = 0 if the plate lies in the x;-x; plane. Perform a rotation of the coordinate
axes to obtain the principal moments of inertia, and use the results of the previ-
ous problem to show that they are

I =pKP(Q—R), I;=pkPQ+R), L=I+1

where

41ra_l 1+ 2
_e_—_ Qz.__ix,_’ R=\/1+4a2

P=
16(1 + 4a2)’ %

A uniform rod of length & stands vertically upright on a rough floor and then tips
over. What is the rod’s angular velocity when it hits the floor?

The proof represented by Equations 11.54-11.61 is expressed entirely in the sum-
mation convention. Rewrite this proof in matrix notation.
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11-22.

11-23.

11-24.

11-25.

11-26.

11-27.

11-28.

11-29.
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The trace of a tensor is defined as the sum of the diagonal elements:
wr{l} = ;Ikk

Show, by performing a similarity transformation, that the trace is an invariant
quantity. In other words, show that

tr{l} = tr{l'}

where {1} is the tensor in one coordinate system and {I}’ is the tensor in a coordi-
nate system rotated with respect to the first system. Verify this result for the differ-
ent forms of the inertia tensor for a cube given in several examples in the text.

Show by the method used in the previous problem that the determinant of the ele-
ments of a tensor is an invariant quantity under a similarity transformation. Verify
this result also for the case of the cube.

Find the frequency of small oscillations for a thin homogeneous plate if the mo-
tion takes place in the plane of the plate and if the plate has the shape of an equi-
lateral triangle and is suspended (a) from the midpoint of one side and (b) from
one apex.

Consider a thin disk composed of two homogeneous halves connected along a di-
ameter of the disk. If one half has density p and the other has density 2p, find the
expression for the Lagrangian when the disk rolls without slipping along a hori-
zontal surface. (The rotation takes place in the plane of the disk.)

Obtain the components of the angular velocity vector w (see Equation 11.102) di-
rectly from the transformation matrix A (Equation 11.99).

A symmetric body moves without the influence of forces or torques. Let x3 be the
symmetry axis of the body and L be along x3. The angle between » and x; is a. Let
o and L initially be in the x,-x3 plane. What is the angular velocity of the symmetry
axis about L in terms of [}, L, w, and a?

Show from Figure 11-9c that the components of w along the fixed (x;) axes are

w] = 0 cos ¢ + {sin Osin ¢
wy = Osin ¢ — ¥ sin O cos ¢

a)3=([}c056+<f)

Investigate the motion of the symmetric top discussed in Section 11.11 for the
case in which the axis of rotation is vertical (i.e., the x3- and x3-axes coincide).
Show that the motion is either stable or unstable depending on whether the quan-
tity 41, Mhg/I5w3% is less than or greater than unity. Sketch the effective potential
V(0) for the two cases, and point out the features of these curves that determine
whether the motion is stable. If the top is set spinning in the stable configuration,
what is the effect as friction gradually reduces the value of ws? (This is the case of
the “sleeping top.”)
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11-30.

11-31.

11-32.

11-33.

11-34.

Refer to the discussion of the symmetric top in Section 11.11. Investigate the equa-
tion for the turning points of the nutational motion by setting 6 =0in Equation
11.162. Show that the resulting equation is a cubic in cos 8 and has two real roots
and one imaginary root for 6.

Consider a thin homogeneous plate with principal momenta of inertia

I, along the principal axis x;
I, > I, along the principal axis x,

L = L + L, along the principal axis x;3

Let the origins of the x; and x; systems coincide and be located at the center of
mass O of the plate. At time ¢ = 0, the plate is set rotating in a force-free manner
with an angular velocity {2 about an axis inclined at an angle « from the plane of
the plate and perpendicular to the xy-axis. If /I, = cos 2a, show that at time ¢
the angular velocity about the x,-axis is

wy(t) = {2cos a tanh ({2 ¢ sin )

Solve Example 11.2 for the case when the physical pendulum does not undergo
small oscillations. The pendulum is released from rest at 67° at time ¢ = 0. Find
the angular velocity when the pendulum angle is at 1°. The mass of the pendulum
is 340 g, the distance Lis 13 cm, and the radius of gyration kis 17 cm.

Do a literature search and explain how a cat can always land on its feet when
dropped from a position at rest with its feet pointing upward. Estimate the mini-
mum height a cat needs to fall in order to execute such a maneuver.

Consider a symmetrical rigid body rotating freely about its center of mass. A fric-
tional torque (N, = —bw) acts to slow down the rotation. Find the component of
the angular velocity along the symmetry axis as a function of time.



