542 13 / CONTINUOUS SYSTEMS; WAVES

packet. As a consequence of this fact, it is the group velocity, not the phase ve-
locity, that corresponds to the velocity at which a signal may be transmitted.*

PROBLEMS

13-1. Discuss the motion of a continuous string when the initial conditions are
g(x,0) = 0, ¢(x,0) = Asin(3wx/L). Resolve the solution into normal modes.

13-2, Rework the problem in Example 13.1 in the event that the plucked point is a dis-
tance L/3 from one end. Comment on the nature of the allowed modes.

13-3. Refer to Example 13.1. Show by a numerical calculation that the initial displace-
ment of the string is well represented by the first three terms of the series in
Equation 13.13. Sketch the shape of the string at intervals of time of % of a period.

134. Discuss the motion of a string when the initial conditions are g¢(x,0) =
4x(L — x)/L?, ¢(x,0) = 0. Find the characteristic frequencies and calculate the
amplitude of the nth mode.

13-5. A string with no initial displacement is set into motion by being struck over a
length 2s about its center. This center section is given an initial velocity wv,.
Describe the subsequent motion.

13-6. A string is set into motion by being struck at a point L/4 from one end by a trian-
gular hammer. The initial velocity is greatest at x = L/4 and decreases linearly to
zero at x = 0 and x = L/2. The region L/2 = x = L is initially undisturbed.
Determine the subsequent motion of the string. Why are the fourth, eighth, and
related harmonics absent? How many decibels down from the fundamental are
the second and third harmonics?

13-7. A string is pulled aside a distance 4 at a point 3L/7 from one end. At a point 3L/7
from the other end, the string is pulled aside a distance % in the opposite direc-
tion. Discuss the vibrations in terms of normal modes.

13-8. Compare, by plotting a graph, the characteristic frequencies w, as a function of the
mode number 7 for a loaded string consisting of 3, 5, and 10 particles and for a
continuous string with the same values of 7 and m/d = p. Comment on the results.

*The group velocity corresponds to the signal velocity only in nondispersive media (in which case
the phase, group, and signal velocities are all equal) and in media of normal dispersion (in which
case the phase velocity exceeds the group and signal velocities). In media with anomalous disper-
sion, the group velocity may exceed the signal velocity (and, in fact, may even become negative or in-
finite). We need only note here that a medium in which the wave number k is complex exhibits at-
tenuation, and the dispersion is said to be anomalous. If k is real, there is no attenuation, and the
dispersion is normal. What is called anomalous dispersion (due to a historical misconception) is, in
fact, normal (i.e., frequent), and so-called normal dispersion is anomalous (i.e., rare). Dispersive ef-
fects are quite important in optical and electromagnetic phenomena.

Detailed analyses of the interrelationship among phase, group, and signal velocities were made
by Arnold Sommerfeld and by Léon Brillouin in 1914. Translations of these papers are given in the
book by Brillouin (Br60).
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13-9.

13-10.

13-11.

13-12.

13-13.

13-14.

13-15.

13-16.

13-17.

In Example 13.2, the complementary solution (transient part) was omitted. If
transient effects are included, what are the appropriate conditions for over-
damped, critically damped, and underdamped motion? Find the displacement
g(x, t) that results when underdamped motion is included in Example 13.2 (as-
sume that the motion is underdamped for all normal modes).

Consider the string of Example 13.1. Show that if the string is driven at an arbi-
trary point, none of the normal modes with nodes at the driving point will be
excited.

When a particular driving force is applied to a string, it is observed that the strmg
vibration is purely of the nth harmonic. Find the driving force.

Determine the complementary solution for Example 13.2.

Consider the simplified wave function
q'/(x’ t) = Agi{wt—kx)

Assume that @ and v are complex quantities and that k is real:
w=qa+ i
v=u+ w
Show that the wave is damped in time. Use the fact that k? = w?/v? to obtain ex-

pressions for a and 8 in terms of » and w. Find the phase velocity for this case.

Consider an electrical transmission line that has a uniform inductance per unit
length L and a uniform capacitance per unit length C. Show that an alternating
current /in such a line obeys the wave equation

so that the wave velocityis v = 1/V LC.

Consider the superposition of two infinitely long wave trains with almost the same
frequencies but with different amplitudes. Show that the phenomenon of beats
occurs but that the waves never beat to zero amplitude.

Consider a wave g(x — vt) propagating in the + x-direction with velocity v. A rigid
wall is placed at x = x,. Describe the motion of the wave for x < x,,.

Treat the problem of wave propagation along a string loaded with particles of two
different masses, m' and m”, which alternate in placement; that is,

m', for j even
m; = .
7 |m", for jodd
Show that the w — k curve has two branches in this case, and show that there is at-

tenuation for frequencies between the branches as well as for frequencies above
the upper branch.
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13-18.

13-19.

13-20.

13-21.

13-22.
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Sketch the phase velocity V(k) and the group velocity U(k) for the propagation of
waves along a loaded string in the range of wave numbers 0 < k < 7/d. Show that
U(m/d) = 0, whereas V(m/d) does not vanish. What is the interpretation of this re-
sult in terms of the behavior of the waves?

Consider an infinitely long continuous string with linear mass density p, for x < 0
and for x > L, but density p, > p; for 0 < x < L. If a wave train oscillating with an
angular frequency  is incident from the left on the high-density section of the
string, find the reflected and transmitted intensities for the various portions of the
string. Find a value of L that allows a maximum transmission through the high-
density section. Discuss briefly the relationship of this problem to the application
of nonreflective coatings to optical lenses.

Consider an infinitely long continuous string with tension 7. A mass M is attached
to the string at x = 0. If a wave train with velocity w/k is incident from the left,
show that reflection and transmission occur at x = 0 and that the coefficients R
and T are given by

R=s5in20, T= cos?26

where

Consider carefully the boundary condition on the derivatives of the wave functions
at x = 0. What are the phase changes for the reflected and transmitted waves?

Consider a wave packet in which the amplitude distribution is given by
1, |k— kol < Ak
A(k) =
(8 {0, otherwise
Show that the wave function is
_ 2sin[(wot — x)AK]

wol — x

ei(wot— kox)

V(x,t)
Sketch the shape of the wave packet (choose ¢t = 0 for simplicity).

Consider a wave packet with a Gaussian amplitude distribution

A(k) = Bexp[—o(k — kg)?]

where 2/Vo is equal to the 1/ewidth* of the packet. Using this function for A(k),
show that

+ o0

V(x0) = BJ exp[—o(k — ky) *]exp(—ikx)dk

-0

= B\/g exp(—x%/40)exp(—ikyx)

*At the points k= ky * 1/ \/;, the amplitude distribution is 1/¢ of its maximum value A(k,). Thus
2/V is the width of the curve at the 1/¢ height.
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Sketch the shape of this wave packet. Next, expand w(k) in a Taylor series, retain
the first two terms, and integrate the wave packet equation to obtain the general
result

V(x,t) = B\/g exp[ —(wot — x)Y/4o]expli(wyt — kox)]

Finally, take one additional term in the Taylor series expression of w(k) and show
that o is now replaced by a complex quantity. Find the expression for the 1/¢
width of the packet as a function of time for this case and show that the packet
moves with the same group velocity as before but spreads in width as it moves.
Illustrate this result with a sketch.



