PROBLEMS 507

where the characteristic frequencies are given by Equation 12.152:

w, =2 [— sin(ﬂ>, r=1,23% (12.167)
md 8

Notice that because the middle particle was initially displaced, no vibration
mode occurs in which this particle is at rest; that is, mode 2 with frequency w,
(see Figure 12-11) is absent.

PROBLEMS

12-1. Reconsider the problem of two coupled oscillators discussed in Section 12.2 in the
event that the three springs all have different force constants. Find the two charac-
teristic frequencies, and compare the magnitudes with the natural frequencies of
the two oscillators in the absence of coupling.

12-2. Continue Problem 12-1, and investigate the case of weak coupling: Kk, <K Ky, K.
Show that the phenomenon of beats occurs but that the energy-transfer process is
incomplete.

12-3. Two identical harmonic oscillators (with masses M and natural frequencies w,) are

coupled such that by adding to the system a mass m common to both oscillators the
equations of motion become

..X.fl + (WM)B&Q + w%xl =0

I
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Solve this pair of coupled equations, and obtain the frequencies of the normal
modes of the system.

124. Refer to the problem of the two coupled oscillators discussed in Section 12.2. Show
that the total energy of the system is constant. (Calculate the kinetic energy of each of
the particles and the potential energy stored in each of the three springs, and sum
the results.) Notice that the kinetic and potential energy terms that have k5 as a coef-
ficient depend on G, and w, but not on C, or w,y. Why is such a result to be expected?

12-5. Find the normal coordinates for the problem discussed in Section 12.2 and in
Example 12.1 if the two masses are different, m; # my. You may again assume all
the K are equal.

12-6. Two identical harmonic oscillators are placed such that the two masses slide against
one another, as in Figure 12-A. The frictional force provides a coupling of the mo-
tions proportional to the instantaneous relative velocity. Discuss the coupled oscil-
lations of the system.
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12-7.

12-8.

12-9.

12-10.

12-11.

12 / COUPLED OSCILLATIONS

FIGURE 12-A Problem 12-6.

A particle of mass m is attached to a rigid support by a spring with force constant k.
At equilibrium, the spring hangs vertically downward. To this mass-spring combina-
tion is attached an identical oscillator, the spring of the latter being connected to
the mass of the former. Calculate the characteristic frequencies for one-dimensional
vertical oscillations, and compare with the frequencies when one or the other of the
particles is held fixed while the other oscillates. Describe the normal modes of
motion for the system.

A simple pendulum consists of a bob of mass m suspended by an inextensible
(and massless) string of length I From the bob of this pendulum is suspended a
second, identical pendulum. Consider the case of small oscillations (so that
sin @ = ), and calculate the characteristic frequencies. Describe also the normal
modes of the system (refer to Problem 7-7).

The motion of a pair of coupled oscillators may be described by using a method
similar to that used in constructing a phase diagram for a single oscillator
(Section 3.4). For coupled oscillators, the two positions x;(f) and x,(f) may be
represented by a point (the system point) in the two-dimensional configuration
space x;—xy. As I increases, the locus of all such points defines a certain curve.
The loci of the projection of the system points onto the x;- and xy-axes repre-
sent the motions of m; and m,, respectively. In the general case, x,(f) and x,(?)
are complicated functions, and so the curve is also complicated. But it is always
possible to rotate the x,—x, axes to a new set x{—x; in such a way that the pro-
jection of the system point onto each of the new axes is simple harmonic. The
projected motions along the new axes take place with the characteristic fre-
quencies and correspond to the normal modes of the system. The new axes are
called normal axes. Find the normal axes for the problem discussed in Section
12.2 and verify the preceding statements regarding the motion relative to this
coordinate system.

Consider two identical, coupled oscillators (as in Figure 12-1). Let each of the os-
cillators be damped, and let each have the same damping parameter . A force F,
cos wt is applied to m;. Write down the pair of coupled differential equations
that describe the motion. Obtain the solution by expressing the differential
equations in terms of the normal coordinates given by Equation 12.11 and by
comparing these equations with Equation 3.53. Show that the normal coordi-
nates 7, and n, exhibit resonance peaks at the characteristic frequencies w; and
w,, Tespectively.

Consider the electrical circuit in Figure 12-B. Use the developments in Section 12.2
to find the characteristic frequencies in terms of the capacitance C, inductance L,
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and mutual inductance M. The Kirchhoff circuit equations are

LL+%+ML=0

LI'2+%2+Mi1=0
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FIGURE 12-B Problem 12-11.

12-12. Show that the equations in Problem 12-11 can be put into the same form as
Equation 12.1 by solving the second equation above for I, and substituting the re-
sult into the first equation. Similarly, substitute for f in the second equation. The
characteristic frequencies may then be written down immediately in analogy with
Equation 12.8.

12-13. Find the characteristic frequencies of the coupled circuits of Figure 12-C.

FIGURE 12-C Problem 12-13.

12-14. Discuss the normal modes of the system shown in Figure 12-D.
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FIGURE 12-D Problem 12-14.

12-15. In Figure 12-C, replace L,; by a resistor and analyze the oscillations.
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A thin hoop of radius Rand mass M oscillates in its own plane hanging from a sin-
gle fixed point. Attached to the hoop is a small mass M constrained to move (in a
frictionless manner) along the hoop. Consider only small oscillations, and show
that the eigenfrequencies are

g Ve (g
o= Va5 0 =2 E

Find the two sets of initial conditions that allow the system to oscillate in its nor-
mal modes. Describe the physical situation for each mode.

Find the eigenfrequencies and describe the normal modes for a system such as
the one discussed in Section 12.2 but with three equal masses m and four springs
(all with equal force constants) with the system fixed at the ends.

A mass M moves horizontally along a smooth rail. A pendulum is hung from M
with a weightless rod and mass m at its end. Find the eigenfrequencies and de-
scribe the normal modes.

In the problem of the three coupled pendula, consider the three coupling con-
stants as distinct, so that the potential energy may be written as

U=- (0% + 6% + 9% - 28126102 - 28130193 e 28230203)

with €9, £13, €95 all different. Show that no degeneracy occurs in such a system.
Show also that degeneracy can occur onlyif €9 = &3 = £93.

Construct the possible eigenvectors for the degenerate modes in the case of the
three coupled pendula by requiring a;; = 2a,,. Interpret this situation physically.

Three oscillators of equal mass m are coupled such that the potential energy of
the system is given by

1
U= 5 [K](x% + x%) + Kgx% + K3(x19€’2 + .X'ng)]

where k3 = V 2k, k,. Find the eigenfrequencies by solving the secular equation.
What is the physical interpretation of the zero-frequency mode?

Consider a thin homogeneous plate of mass M that lies in the x—x, plane with its
center at the origin. Let the length of the plate be 2A (in the x,-direction) and let
the width be 2B (in the x; -direction). The plate is suspended from a fixed support
by four springs of equal force constant k at the four corners of the plate. The plate is
free to oscillate but with the constraint that its center must remain on the xs-axis.
Thus, we have three degrees of freedom: (1) vertical motion, with the center of the
plate moving along the x3-axis; (2) a tipping motion lengthwise, with the x;-axis
serving as an axis of rotation (choose an angle 8 to describe this motion); and (3) a
tipping motion sidewise, with the x,-axis serving as an axis of rotation (choose an
angle ¢ to describe this motion). Assume only small oscillations and show that the
secular equation has a double root, and hence that the system is degenerate.
Discuss the normal modes of the system. (In evaluating the a; for the degenerate
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12-23.

12-24.

12.25.

12-26.

12-27.

12-28.

modes, arbitrarily set one of the a; equal to zero to remove the indeterminacy.)
Show that the degeneracy can be removed by adding to the plate a thin bar of mass
m and length 2A situated (at equilibrium) along the x,-axis. Find the new eigenfre-
quencies for the system.

Evaluate the total energy associated with a normal mode, and show that it is con-
stant in time. Show this explicitly for the case of Example 12.3.

Show that the equations of motion for longitudinal vibrations of a loaded string are
of exactly the same form as the equations for transverse motion (Equation
12.131), except that the factor 7/d must be replaced by k, the force constant of
the string.

Rework the problem in Example 12.7, assuming that all three particles are dis-
placed a distance @ and released from rest.

Consider three identical pendula instead of the two shown in Figure 12-5 with a
spring of constant 0.20 N/m between the center pendulum and each of the side
ones. The mass bobs are 250 g, and the pendula lengths are 47 cm. Find the nor-
mal frequencies.

Consider the case of a double pendulum shown in Figure 12-E where the top pen-
dulum has length L; and the bottom length is Lo, and similarly, the bob masses are
m; and my. The motion is only in the plane. Find and describe the normal modes
and coordinates. Assume small osillations.
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FIGURE 12-E Problem 12-27.

Find the normal modes for the coupled pendulums in Figure 12-5 when the pen-
dulum on the left has mass bob m; = 300 g and the right has mass bob m, = 500 g.
The length of both pendula is 40 cm, and the spring constant is 0.020 N/m. When
the left pendulum is initially pulled back to §; = —7° and released from rest when
6, = 6, = 0, what is the maximum angle that 6, reaches? Use the small angle ap-
proximation.



