
IF/UFRJ
Statistical Mechanics - 2025/1 – Raimundo

Problem Set #11 – Phase Transitions, Part 3

23/6/2025

1. The one-dimensional Ising Hamiltonian may be written as

H = −J
∑
i

σiσi+1, (1)

where J > 0 and J < 0 respectively correspond to the ferromagnetic (FM) and
antiferromagnetic (AFM) systems, and σi = ±1, ∀i.

(a) Which are the ground states of the system in the FM and AFM cases?

(b) Define t ≡ tanh J/kBT and t′ = tanh(J/kBT )
′, and show that the ‘series’

combination of b bonds yields t′ = tb; see Fig. 1. [Hint: obtain a renormali-
sation group transformation (RGT) by decimating the spins shown as filled
circles in Fig. 1.]
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Figure 1: Problem 1: Decimation of b sites between sites 1 and b + 1 (left panel) leads to a single bond (right
panel) between them.

(c) Obtain the fixed points of the RGT. Do they depend on b?

(d) Present a detailed discussion of the physical content of each one of the fixed
points, including the value of Tc.

(e) Draw flow lines between the fixed points, and interpret their physical con-
tent.
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(f) Comment on the adequacy (or inadequacy) to describe the antiferromag-
netic case by this method.

2. Consider the cluster of sites represented in Fig. 2(a) as part of a square lattice
of Ising spins; each pair of nearest neighbour spins interact via a coupling
K ≡ J/kBT . Assuming ‘boundary conditions’ according to which sites 1 and
1’ (2 and 2’) are in the same spin state, the cluster is equivalent to the one
in Fig. 2(b), in which external (dangling) bonds have been discarded since we
are interested in probing how spin correlations spread along, say the vertical
direction. A renormalisation group transformation (RGT) may be obtained
through the elimination of the spin variables on sites 3 and 4 of Fig. 2(b), thus
obtaining an effective coupling K ′ between spins on sites 1 and 2, as shown in
Fig. 2(c).
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Figure 2: Problem 2 – Self-dual cluster for the square lattice.

(a) Show that the RGT in this case is given by

t′ =
2t2(1 + t)

1 + 2t3 + t4
, (1)

where t ≡ tanhK and t′ ≡ tanhK ′.

(b) Obtain the fixed points of the transformation and the critical point ex-
ponent ν. Compare with the exact results, tanhKc = 0.414 and ν = 1.
Comment.

3. Suppose that the bonds between sites of a lattice are not all necessarily present,
but they are randomly distributed, with concentration p ∈ [0, 1].
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(a) Discuss qualitatively the possibility of existence (or not) of an infinite path
of sites connected by nearest neighbour bonds, in the limits p ≪ 1 and
p ∼ 1. Establish an analogy between this percolation geometric transition
and thermal transitions.

(b) Consider two bonds (involving three sites) arranged ‘in series’ as in Fig. 3(a).
Obtain the probability that site 1 is connected to site 3. From your result
establish the critical concentration for percolation in one dimension. Your
arguments should be carefully laid out.
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Figure 3: Problem 3, items (b) and (c) – Series (a) and parallel (b) combinations of bonds. Each bond is present
with probability p.

(c) Consider the ‘parallel’ arrangement displayed in Fig. 3(b). Obtain the prob-
ability, pp, of site 1 being connected to site 2. Your arguments should be
carefully laid out.
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1– Considere o “cluster” da Figura 1 abaixo como uma aproximação da rede quadrada no

contexto do Grupo de Renormalização no Espaço Real. O problema é percolação por ligações:

cada ligação tem probabilidade p de estar presente.

(a) Mostre que a probabilidade de o sitio 1 estar ligado ao sitio 3 é p′ = 2p2 − p4.

(b) O resultado de (a) pode ser imaginado como a probabilidade efetiva na rede renormalizada.

Determine o ponto fixo p∗ e o expoente ν para este sistema. O fator de escala é b =
√

2 (por

que ?). Compare com os resultados exatos pc = 1/2 e ν = 4/3 e comente.

2– Um rato treinado vive na casa mostrada na Figura 2 abaixo. Uma campainha toca a inter-

valos regulares (muito pequenos comparados com a vida do rato). Cada vez que a campainha

toca, o rato muda de quarto. Quando muda de quarto, ele tem a mesma probabilidade de

passar por qualquer uma das portas do quarto em que está. Aproximadamente que fração de

sua vida o rato passa em cada quarto?

3– Considere uma caixa de volume Ω conectada a outra caixa de volume infinito por um

pequeno buraco (vide figura 3 abaixo). Admita que a probabilidade de uma particula se

mover de A para B no intervalo ∆t é (n/Ω)∆t, onde n ≡ numero de particulas em A, e a

probabilidade de uma particula de mover de B para A no intervalo ∆t é ρ∆t (ρ = constante).

Escreva a equação mestra para a distribuição de probabilidade de particulas em A e resolva-a,

admitindo que em t = 0, n = n0. Calcule o numero medio de particulas em A, e a variancia,

como função do tempo. Sugestão: passe da equação mestra para a equação de Fokker-Planck,

e resolva esta ultima por transformada de Fourier.

4– A função de autocorrelação K(s) de uma variavel estatisticamente estacionaria y(t) é

dada por: K(s) = K(0) e−α2 s2

cos(2πf∗s). Calcule o espectro de potencia w(f), e discuta

seu comportamento nos limites: (i) α → 0; (ii) f∗ → 0, e (iii) ambos α e f∗ → 0.
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Figure 4: Problem 3, item (d) – Given that the probability of any two sites being connected by a bond is p (left
panel), what is the probability, p′, of 1 and 3 being connected (right panel)?

(d) Use the decimation cluster for the square lattice shown in Fig. 4 and the
underlying series and parallel associations to obtain an estimate for pc and
ν for the bond percolation problem on a square lattice. Your arguments
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should be carefully laid out. Compare with the exact results, pc = 1/2 and
ν = 4/3.

4. Decimation and the transfer matrix.

(a) We have seen that the partition function for the one-dimensional Ising
model with periodic boundary conditions (PBC) may be obtained as

Z =
∑
{σ}

⟨σ1|T |σ2 ⟩⟨σ2|T |σ3 ⟩ . . . ⟨σN |T |σ1 ⟩ (1)

= λN
> (1 + tN), (2)

where λ> = 2 coshK and λ< = 2 sinhK are respectively the largest and
smallest eigenvalues of the transfer matrix, T , t ≡ λ</λ> = tanhK (under
no external field, as considered throughout here), and K ≡ J/kBT .

Now consider an equivalent Ising chain, but with N/2 sites, with coupling
K ′, and an added constant term to the Hamiltonian, K ′

0. Show that, once
the constant term is determined in terms of the unprimed variables, the
condition for the partition function of these systems to be the same is

t′ = t2, (3)

where t′ ≡ λ′
</λ

′
> = tanhK ′ is the ratio of the eigenvalues of the trans-

fer matrix for the smaller system. The procedure thus outlined therefore
provides a rule to combine Ising bonds in series upon the elimination of
an intermediate spin variable. The t-variable is usually referred to as the
transmissivity.

(b) Now consider the q-state Potts model on a chain with PBC,

H = −qJ
N∑
i=1

δσiσi+1
, (4)

where σi = 0, 1, ..., q − 1. In Problem Set #10, you have probably deter-
mined the spectrum of the transfer matrix as

λ> = eqK + (q − 1), non-degenerate (5)

λ< = eqK − 1, (q − 1)-fold degenerate, (6)

where K ≡ J/kBT . The ratio of these eigenvalues,

t ≡ λ<

λ>

=
1− e−qK

1 + (q − 1)e−qK
, (7)
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plays the role of the transmissivity variable for the Potts model. Show that
a ‘decimation’ procedure similar to (a) above also yields

t′ = t2, (8)

also for the Potts model. [If you are sceptical about this procedure, you may
try an explicit elimination of the middle spin, and prove that if you express
the decimation transformation in terms of the t-variables, you recover t′ =
t2.]

(c) Can you provide a physical reason for the ratio of the two largest eigen-
values of the transfer matrix be so intimately connected with the scaling
transformation?

5. Duality transformation. Let us consider a square lattice and perform a trans-
formation consisting of three procedures, as follows.

(i) On each bond of the original lattice we draw a perpendicular line, so that
the intercepts of these lines also form a lattice, which we call the dual
lattice (of the original lattice). In the case of a square lattice, Fig. 5 shows
that its dual is also a square lattice, so one says that the square lattice
is self dual. You may easily convince yourself that self-duality does not
occur in general: for instance, the dual of the triangular lattice is the
hexagonal (also called honeycomb) lattice, and vice-versa. Nonetheless,
if one performs a dual transformation on the dual lattice, we recover the
original lattice.

(ii) We ascribe the same kind of spin variable to the sites of the dual lattice.

(iii) From the thermodynamical point of view, we want to map a low-tempera-
ture phase, say in the original lattice, onto a high-temperature phase on
the dual lattice, or vice-versa. That is, to the coupling K = J/kBT ≫ 1

one associates a coupling K̃ = J̃/kBT̃ ≪ 1.

Let us then consider the Ising model on a square lattice. Our previous expe-
rience suggests that the transmissivity t ≡ tanhK is more convenient to work
with than the exponential function, expK.

(a) Given that: (1) the dual variable must also be in the range [0, 1]; (2) if t
is in the high(low)-temperature range, then t̃ should be in the low(high)-
temperature range; and (3) the dual of the dual is the original, show that
these three properties are satisfied by the transformation

t̃ =
1− t

1 + t
. (1)
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Figure 5: Problem 5 – Duality transforma-
tion: (i) to each bond in the original lattice
(full black lines) we associate a perpendicu-
lar bond (dashed red lines), which therefore
make up the dual lattice. (ii) to each site of
the dual lattice we associate a random vari-
able analogous to those in the original lattice.
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Figure 6: Problem 5 .

(b) Assuming there is a single phase transition between paramagnetic and fer-
romagnetic states in the whole temperature range, show that the critical
point for the Ising model on the square lattice is exactly at

tc =
√
2− 1. (2)

Your arguments should be laid out carefully.

(c) Show that a parallel combination of two t’s, shown in Fig. 6, yields

tp =
2t

1 + t2
. (3)

(d) Note that the dual of the cluster in Fig. 6 is a series combination of two
t̃’s. Use this fact to rederive the result (3). Your arguments should be laid
out carefully.

The above results can be generalised to Potts models, with suitable modi-
fications. With the definition of transmissivity given in Eq. (7) of Problem
4, one expects that the duality transformation must depend on q. In fact,
it can be shown that the duality transformation becomes

t̃ =
1− t

1 + (q − 1)t
. (4)
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(e) Show that the three properties mentioned in item (a) are indeed satisfied
by (4).

(f) Show that the exact critical temperature for the Potts model on a square
lattice is

tc(q) =

√
q − 1

q − 1
(5)

and use it to sketch kBTc/J as a function of q.

(g) Show that a parallel combination of two Potts-model bonds is given by

tp =
t[2 + (q − 2)t]

1 + (q − 1)t2
. (6)

6. A simple decimation scheme.

(a) Use the cluster in Fig. 7(b), together with results from Problems 4 and 5,
to obtain an approximate decimation transformation for the Potts model
on a square lattice.
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Figure 7: Problem 6 – Part of a square lattice (a) used to obtain a decimation transformation for the Potts
model, through a sequence of series and parallel combinations on the cluster in (b). t is the transmissivity, and
the σi = 0, 1...(q − 1) are the Potts variables. In (a) bonds in the original lattice are represented by full lines,
decimated sites by ×’s, and surviving sites by circles, which also form a square lattice whose bonds are represented
by dashed lines.

(b) Obtain an estimate for the fixed point, t∗, of this decimation transformation,
and make a sketch of kBTc/J as a function of q. Compare with the exact
result obtained in Problem 5. Comment on your findings.

(c) Obtain an estimate for the correlation length exponent, ν, through this
decimation transformation, and make a sketch of ν as a function of q.
Compare with the conjecture (exact result),

ν =
2

3

[
2 +

π

cos−1(1
2

√
q)− π

]−1

. (1)

Comment on your findings.
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