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Problem Set #10 – Phase Transitions, Part 2

16/6/2025

1. (a) Using the transfer matrix method, show1 that the correlation function for
the Ising model on a one-dimensional lattice with periodic boundary con-
ditions is given by

〈σ0σr〉 = 〈σ0〉〈σr〉+ a

(
λ<
λ>

)r
, (1)

where a is a constant, and λ> and λ< are the largest and second-largest
eigenvalues of the transfer matrix; assume the magnetic field is non-zero.

(b) Then show that
ξ−1 = ln(λ>/λ<). (2)

Note that this way of calculating ξ is more general than derived here, being
applicable to any ‘classical’ (commuting) Hamiltonian for which a transfer
matrix can be defined; the ratio λ>/λ< must then be understood as the
ratio between the two largest eigenvalues in absolute value.

An example of the broader application of Eq. (2) is provided by the so-
called Potts model, in which one associates a discrete classical variable,
σi = 1, 2 . . . q, to each site, representing the possible states of a vector. For
q = 2, the vector can point along two directions of a straight line; it is the
analogue of the z-component of a spin-1/2 operator, or the Ising model.
For q = 3, 4, 5, etc. the vector can point to the vertices of polygons within
a circle of unit radius, such as an equilateral triangle, a square, a pentagon,

1In your first round to solve this set, you may skip the solution to this item, since you can
use Eq. (1) to show Eq. (2), and the remaining items only depend on the latter equation.
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and so forth. The interaction energy between two of these vectors, located
at nearest neighbour sites i and j, may be taken as

Hij = −qJδσiσj , (3)

where J is a constant and δσiσj is the Kronecker δ-function. Note that for
q = 2 this is equivalent to the Ising model, but with a coupling constant
twice as large, which is immaterial for our purposes here. Consider then
a one-dimensional lattice whose N (N � 1) sites are occupied by Potts
variables, for the special cases q = 3 and 4; the magnetic field is taken as
zero.

(c) Discuss the possible ground states of the system for J > 0. What is their
degeneracy?

(d) Discuss the possible ground states of the system for J < 0. Is the degener-
acy macroscopic for q ≥ 3?

(e) From now on assume J > 0, and obtain the eigenvalues of the transfer
matrix for q = 3 and q = 4.

(f) Show that the eigenvalue structure for a generic q is

λ> = eqJ/kBT + (q − 1), non-degenerate (4)

λ< = eqJ/kBT − 1, (q − 1)-fold degenerate. (5)

(g) Using Eq. (2) , obtain the low-temperature correlation length for a generic
q-state Potts chain.

(h) What can you conclude about Tc for the Potts model in one dimension?
Why?

(i) What can you conclude about the lower critical dimension, d`, for the Potts
model? Why?

2. Consider interacting spins on a d-dimensional lattice, with linear size L � 1
(defined, in units of the lattice spacing, a, as the number of lattice sites along
one of the cartesian directions). Assume one can calculate (or measure) a
quantity XL(T ) on this finite-size lattice; it can be the magnetisation, or the
susceptibility, or the specific heat, and so forth. Also assume this quantity is
such that in the thermodynamic limit one has X ∼ |T−Tc|−x, where x = −β, or
γ, or α, respectively, for the examples mentioned above. The crucial observation
about finite-sized systems is that near Tc (for the otherwise infinite system),
there are two competing length scales, namely L and the correlation length,
ξ ∼ |T − Tc|−ν . We want to formulate a scaling theory which interpolates the
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behaviour of X between the thermodynamic limit and on a finite-sized lattice.
To this end, we start with the ansatz

XL(T ) = LωF (L/ξ), (1)

where ω is to be determined, and F (y) is a scaling function, which must satisfy
some constraints to be discussed below.

(a) If L� ξ, the correlations are not limited by the finiteness of the lattice, so
that XL(T ) cannot depend on L. What constraint does this impose on the
behaviour of F (y) for y � 1?

(b) Show that this implies in
ω = x/ν. (2)

(c) If L � ξ, the correlations are limited by the finiteness of the lattice, so
that XL(T ) cannot be singular. What constraint does this impose on the
behaviour of F (y) for y � 1?

(d) Discuss the application of your finite-size scaling (FSS) theory to the corre-
lation length itself. In particular, what can you predict for the ratio ξL/L
exactly at the critical point, T = Tc?

3. Consider the spin-1/2 Ising model on a strip of width 2 and length N (i.e.,
2×N sites), with periodic boundary conditions along the length; see Fig. 1.

J 

J 

Figure 1: Problem 3 : The Ising model on a strip of width 2.

Each site is conveniently specified by the coordinates (i, j), with i = 1, ..., N
and j = 1, 2. With σi,j = ±1, the Hamiltonian can then be written as

H = −J
2∑
j=1

N∑
i=1

σi,jσi+1,j − J
N∑
i=1

σi,1σi,2,

where the first term describes the interactions of nearest-neighbour spins on the
same ring, and the second describes the interactions between nearest-neighbour
spins on different rings.
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(a) The transfer matrix now relates the spin configurations of a column with
those of the next column. Write down the transfer matrix on a basis which
makes maximum use of the symmetries of the problem. [Hint: It is conve-
nient to ‘split’ the interactions within the columns in two terms, analogously
to what we did for the magnetic field term in Sec. 8.4 of the Lecture Notes;
see Eq. (8.4.4).]

(b) Obtain the correlation length at low temperatures [if necessary, resort to
numerical solutions, or via Mathematica, Maple, etc.; see item (d) below].

(c) What is the critical temperature for this system?

(d) Refer to the correlation length for this strip as ξ2, and refer to the correlation
length for the linear chain as ξ1. On the same graph, plot ξ2/2 and ξ1 as
functions of K ≡ J/kBT .2 Let K∗ be the value of K where these two
curves intersect each other. Obtain an estimate for K∗, and compare with
the exact critical point for the Ising model on a square lattice, Kc = 0.441.
Comment and interpret the suggested procedure.

2Note that one should no longer use the expressions for ξ1,2 at low temperatures.
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