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Statistical Mechanics - 2025/1 – Raimundo

Problem Set #9 – Phase Transitions, Part 1

2/6/2025

1. The spin-S Heisenberg model is defined by the Hamiltonian

H = −J
∑
〈ij〉

Si · Sj − µ
∑
i

H · Si, (1)

where µ is the magnetic moment, H is an applied external field, and the sums
extend over sites of a d-dimensional lattice, but 〈ij〉 restricts the sum over
nearest neighbour pairs. We consider the Weiss approximation for this model.

(a) Show that the critical temperature for magnetism is given by

kBTc =
S(S + 1)

3

µzJ

2
, (2)

where z is the coordination number of the lattice (i.e. the number of nearest
neighbours of any site). Compare your result with that for the Ising model
(spin-S) and comment physically.

(b) Show that the magnetisation satisfies a law of corresponding states when
expressed in terms of reduced field, H̃, and temperature, T̃ .

(c) Obtain the critical exponent for the magnetisation, M ∼ (Tc − T )β. Does
it depend on S? Does it depend on z? How does it compare with that for
the Ising model, also within the Weiss approximation?

2. The simplest example of a quantum critical point (i.e., a critical point at zero
temperature) is provided by systems described by the Ising model in a transverse
field, Γ, whose Hamiltonian is

H = −J
∑
〈i,j〉

σzi σ
z
j − Γ

∑
i

σxi , (1)

where the σσσ’s are Pauli matrices, and the first sum extends to pairs of nearest
neighbour sites of a d-dimensional lattice with coordination number z.
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Figure 1: Problem 2 – Weiss theory for the trans-
verse Ising model.
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Alternaltively the phase diagram in (A2, A4) space takes the form: vskip 5 truemm

(i) Both trajectories (a) and (b) exhibit a second-order transition.

(ii) Trajectory (a) passes through the TCP and lies entirely within the tricritical
region. The transition is characterised entirely by the properties of the TCP,
and all critical exponents are tricritical ones.

(iii) Trajectory (b) exhibits an ordinary second order transition. However, it
starts in the tricritical region and so initially the divergence of the relevant
quantities is controlled by the TCP. Eventually it passes into the critical
region and the transition is characterised by the line of ordinary critical
points and the critical exponents that are given above.

In other words we only see a transition controlled by the TCP when we apporoach
along a trajectory lying in the tricritical region. For trajectories that pass from
one region to another we see a change in the critical behaiviour. This change is
characterised by crossover exponents.

Figure 2: Problem 4 – A typical phase diagram
showing a tricritical point (TCP); T is the temper-
ature and g is a generic coupling driving the system
between second- [Tc(g)] and first-order [T0(g)] tran-
sitions.

(a) By invoking solely physical arguments,

(i) discuss the nature of the ground state of this system in the limits
Γ� J and Γ� J ;

(ii) sketch the expected behaviour of the spontaneous magnetisation, 〈σz〉,
as a function of T , for fixed Γ. Compare with what you would expect
for 〈σz〉(T ) when Γ = 0.

(iii) make a sketch of the expected behaviour of the critical temperature
as a function of Γ.

In what follows we will highlight how these features can be quantitatively
obtained within the Weiss approximation.

(b) We define an effective Weiss Hamiltonian as

HW = −
∑
i

γγγ · σσσi,

in which the mean field acting on each spin is given by

γγγ = Γx̂ +
zJ

2
〈σz〉 ẑ;

see Fig. 1. Taking ẑ′ ‖γγγ as the new direction of quantisation (see Fig. 1),
show that

〈σz′〉 = tanh βγ,

where γ ≡ |γγγ|.
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(c) The Weiss field, γγγ, makes an angle θ with the ẑ direction, such that θ = 0
when Γ = 0, or γγγ = (1/2)zJ〈σz〉ẑ, and θ = π/2 when 〈σz〉 = 0, or γγγ = Γx̂;
see Fig. 1. Show that γ satisfies a self-consistency condition,

γ

tanh βγ
=

1

2
zJ.

(d) The phase transition is signalled by 〈σz〉 ' 0. Show that in this case the
critical curve is given by

tanh
Γ

kBTc
=

2Γ

zJ
,

and make a sketch of τc ≡ (2kBTc/zJ) as a function of g = 2Γ/zJ . Check
if your results match the qualitative prediction made in (a)(iii).

3. Consider the following expansion for the free energy in terms of the order pa-
rameter φ, for a magnetic system at zero field.

A(T, φ) = A0(T ) + α2(T )φ2 − α4(T )φ4 + α6(T )φ6 ,

with α4(T ) > 0. Suppose that near Tc, the coefficient of the term φ6 can be
written as

α6(T ) =
α2

4(T )

3α2(T )
(1 + ε), ε ≡ T − Tc

Tc

.

(a) Discuss the solutions for φ for both T → T±c (i.e. approaching Tc from
temperatures above or below).

(b) Discuss the stability of the solutions for φ.

(c) Make sketches of the free energy for T above and below Tc. Comment on
the order of the phase transition.

4. In a phase diagram, the first- and second-order critical lines smoothly meet at
the so-called tricritical point, characterised by, say a temperature Tt; see Fig. 2.
Within Landau’s theory this point is characterised by imposing that the fourth
order term in the free energy expansion vanishes identically: α4 ≡ 0. Let us
consider a magnetic system and define ε ≡ (T −Tt)/Tt. Calculate the tricritical
exponents within Landau theory for the following quantities:

(a) the magnetisation, M ∼ |ε|βt ;
(b) the susceptibility, χT ∼ |ε|−γt ;
(c) the critical isotherm, M ∼ H1/δt ; and
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(d) the specific heat, ∆CH ∼ |ε|−αt .

(e) Optional. Very simple, but you’d need to read §§ 8.5 and 8.6 beforehand.
Obtain the upper critical dimension for tricritical phenomena, given that
the exponents describing correlations are the same as those for the usual
Landau theory, namely νt = 1/2 and ηt = 0.
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