IF/UFRJ Statistical Mechanics - 2024/1 – Raimundo

Problem Set #6 – Quantum Effects: Bose and Fermi Statistics

17/4/2024

1. (a) Show that for ideal quantum gases, the energy density can be obtained from the grand-potential, J, as

$$\tilde{e} = -\frac{1}{V} \left(\frac{\partial}{\partial \beta} \beta J \right)_{z,V}.$$
(1)

(b) Now suppose the single-particle levels depend on σ , $\varepsilon_{\mathbf{p}\sigma}$, to show that

$$\langle n_{\mathbf{p}'\sigma'} \rangle = -\frac{1}{\beta} \left(\frac{\partial}{\partial \varepsilon_{\mathbf{p}'\sigma'}} \beta J \right)_{z,T}.$$
 (2)

- 2. Consider an ideal system of N particles; the states accessible to each particle have energies given by $\varepsilon_{\mathbf{p}}$ ($\mathbf{p} \equiv$ linear momentum index). Admit that each state can accommodate up to q particles, so that q = 1 corresponds to fermions, and $q = \infty$ corresponds to bosons.
 - (a) Calculate the average occupation $\langle n_{\mathbf{p}} \rangle$ of the state with energy $\varepsilon_{\mathbf{p}}$; recover the limits $q \to 1$ and $q \to \infty$.
 - (b) Discuss the behaviour of $\langle n_{\mathbf{p}} \rangle$ at T = 0.
 - (c) If $1 < q < \infty$ should you expect the system to behave similarly to bosons or to fermions? Why?
- 3. Consider an ideal Fermi gas, with energy spectrum $\varepsilon(p) = ap^s$, contained in a hypercubic box of 'volume' $V = L^d$, in a *d*-dimensional space.
 - (a) Show that the equation of state is

$$PV = \frac{s}{d}E,\tag{1}$$

where E is the internal energy.

(b) Show that the specific heat is given by

$$\frac{C_V}{Nk_{\rm B}} = \frac{d}{s} \left(\frac{d}{s} + 1\right) \frac{f_{(d/s)+1}(z)}{f_{d/s}(z)} - \left(\frac{d}{s}\right)^2 \frac{f_{d/s}(z)}{f_{(d/s)-1}(z)},\tag{2}$$

where z is the fugacity, and

$$f_n(z) = \frac{1}{\Gamma(n)} \int_0^\infty \frac{x^{n-1} dx}{z^{-1} e^x + 1}.$$
 (3)

- (c) Obtain the low-temperature behaviour of C_V/Nk_B . Comment.
- 4. Consider an ideal gas of N bosons, with energy spectrum $\varepsilon_{\mathbf{p}} = ap^s$, s > 0, contained in a d-dimensional box of linear size L and volume $V = L^d$.
 - (a) Discuss the criterion for occurrence of Bose-Einstein condensation (BEC). Is there BEC for any value of s and d?
 - (b) Where applicable, determine the dependence of T_c with the density, $n \equiv N/V$.
 - (c) Discuss the dependence of the specific heat with T at low temperatures, for general s and d.