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1. Consider a classical ideal gas of monatomic molecules.

(a) Show that the grand partition function is given by

Z = ezZ1 ,

where z is the fugacity, and Z1 = V/Λ3 is the partition function for a single

molecule, with Λ =
(
h2/2πmkBT

)1/2
.

(b) Show that the average number of molecules is

〈N〉 = zZ1

(c) Obtain the equation of state in terms of 〈N〉.

2. A fluid can coexist in the liquid and gas (vapour) phases. In order to describe
this coexistence, we adopt a very simple model, in which we treat the liquid as
a “gas” of independent molecules such that (i) the interaction of each molecule
with the others is represented by a constant potential, −φ; (ii) each one of the
N molecules of the liquid moves freely in a total volume V` = N` v0, where v0
is the (constant) volume per molecule in the liquid phase. The vapour of this
liquid (Ng molecules in a volume Vg) is treated as a usual ideal gas.

(a) Treat each subsystem (liquid and vapour) in the canonical ensemble, and
show that the vapour pressure is given by

P =
kBT

v0
e−βφ.
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(b) Treat each subsystem (liquid and vapour) in the grand-canonical ensemble,
and reobtain the above result. Comment on the differences between the
approaches in (a) and (b).

(c) Discuss physically the behaviour of P at low and high temperatures.

3. A monatomic gas coexists in equilibrium with the solid phase. Assume the
energy per atom necessary to transform solid in gas is η, and adopt the Einstein
model for solids, namely each atom vibrates around its equilibrium position
with frequency ω, being therefore represented by a three-dimensional harmonic
oscillator. Determine the vapour pressure, P , as a function of temperature,
T , for this system, and sketch P (T ). Discuss physically the low- and high-
temperature limits.

4. Consider a monatomic crystal, made up of N atoms. The atoms may be located
in two kinds of positions: normal (filled circles in Fig. ??) or interstitial (empty
circles). Assume there are an equal number, N , of both kinds of positions, but
the energy of an atom on an interstitial position excedes by ε that of an atom
on a normal position.

!

Figure 1: Problem ?? - Lattice
sites are represented by full circles,
while intersticial sites are repre-
sented by empty circles.

Figure 2: Problem ?? -Gas molecules are ad-
sorbed on a surface.

(a) Show that the partition function for this system can be written as

Z =
∑
n

Ω(n) e−βnε ≡
∑
n

ζ(n), (1)

where n (1� n� N) is the number of occupied interstitial positions, and
Ω(n) is the number of ways these positions can be occupied.
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(b) Show that the leading contribution to Ω(n) is

Ω(n) ∼
(
N

n

)2n

. (2)

(c) Since Ω(n) increases rapidly with n, while exp(−βnε) decreases rapidly
with n, one expects a sharp maximum of ζ(n) at some n∗. Show that

n∗

N
≈ e−βε/2, (3)

and that the Helmholtz free energy becomes

A ≈ −kBT ln ζ(n∗). (4)

(d) Alternatively, we can calculate the Helmholtz free energy by first calculating
the entropy, S, associated with displacing n atoms to interstitial positions,
and using A = E−TS. Show that imposing A to be a minimum yields the
same n∗ as in (c).

5. A surface with M sites can adsorb atoms of an ideal gas (single atoms with
mass m) at a temperature T and pressure P ; see Fig. ??. An adsorbed atom
has energy −ε0, relative to the free case.

(a) Obtain an expression for the surface coverage, θ, (i.e., the ratio of the num-
ber of adsorbed atoms by M , the number of adsorbing sites) as a function
of P , T , and ε0.

(b) Discuss physically the behaviour of θ in the limits P → 0 and P →∞.
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