IF/UFRJ Graduate Quantum Mechanics I 2023/2 – Raimundo

Problem Set #12

25/10/2023 - due by 6/11/2023 at 12:00 noon

Figure 1: Problem 1: Sequence of rotations through the Euler angles; see text.

1. A rotation defined by the Euler angles, $(\alpha\beta\gamma)$, corresponds to the three successive rotations shown in Fig. 1: (1) of α around the Oz axis, such that Oy goes into Ou; (2) of β around the Ou axis, such that Oz goes into OZ; (3) of γ around the OZ axis, such that Ou goes into OY. Therefore,

$$D(\alpha\beta\gamma) = D_Z(\gamma)D_u(\beta)D_z(\alpha) = e^{-(i/\hbar)\gamma J_Z} e^{-(i/\hbar)\beta J_u} e^{-(i/\hbar)\alpha J_z},$$
(1)

where J_n is the total angular momentum component along the direction $\hat{\mathbf{n}}$. Show that $D(\alpha\beta\gamma)$ can be expressed in terms of rotations around fixed axes as

$$D(\alpha\beta\gamma) = e^{-(i/\hbar)\alpha J_z} e^{-(i/\hbar)\beta J_y} e^{-(i/\hbar)\gamma J_z}.$$
(2)

2. Let \mathbf{J}_1 and \mathbf{J}_2 be two angular momentum operators, with $[J_{1\mu}, J_{2\nu}] \equiv 0, \forall \mu, \nu = x, y, z$, and $\mathbf{J} = \mathbf{J}_1 + \mathbf{J}_2$, and let \mathcal{R} be an arbitrary rotation.

(a) Show that the corresponding rotation matrices satisfy the following relation

$$\mathcal{D}_{m'm}^{(j)}(\mathcal{R}) = \sum_{m'_1m_1} \sum_{m'_2m_2} \langle j_1 j_2 m'_1 m'_2 | j_1 j_2 j m' \rangle \langle j_1 j_2 m_1 m_2 | j_1 j_2 j m \rangle \\ \times \mathcal{D}_{m'_1m_1}^{(j_1)}(\mathcal{R}) \mathcal{D}_{m'_2m_2}^{(j_2)}(\mathcal{R}),$$

where the $\langle ... | ... \rangle$ are Clebsch-Gordan coefficients.

- (b) Discuss this result.
- 3. Consider two spins-1/2, \mathbf{S}_1 and \mathbf{S}_2 , fixed in position, whose interaction is described by a Hamiltonian \mathcal{H} . Suppose the observables \mathbf{S}_1 and \mathbf{S}_2 undergo simultaneous and identical rotations by an angle θ around a direction $\hat{\mathbf{n}}$.
 - (a) Show that if $\mathcal{H} = -A\mathbf{S}_1 \cdot \mathbf{S}_2$, with A a constant, then \mathcal{H} is invariant for any $\hat{\mathbf{n}}$ and θ .
 - (b) Show that if $\mathcal{H} = -A (S_1^x S_2^x + S_1^y S_2^y)$, with A a constant, then \mathcal{H} is invariant for $\hat{\mathbf{n}} \equiv \hat{\mathbf{z}}$ and any θ .
 - (c) Show that if $\mathcal{H} = -A S_1^z S_2^z$, with A a constant, then \mathcal{H} is invariant for $\hat{\mathbf{n}} \equiv \hat{\mathbf{x}}$ (or $\hat{\mathbf{y}}$) and $\theta = \pi$.
 - (d) Comment about the main differences and similarities amongst your three findings above; try to identify cases in which the symmetry is discrete or continuous. Does the spin magnitude have any influence in your findings?
- 4. Consider rotations by an angle β around the Oy axis, for a particle with total angular momentum **J**.
 - (a) Show that

$$\sum_{m=-j}^{j} m \left| \mathcal{D}_{mm'}^{(j)}(\beta) \right|^2 = m' \cos \beta,$$

where $\mathcal{D}_{mm'}^{(j)}(\beta)$ is the matrix representation of the corresponding rotation operator.

- (b) Check your results of (a) for j = 1/2.
- (c) Discuss the result in (a).
- 5. Consider a tensor operator $T_q^{(k)}$ and a state $|\alpha jm\rangle$; α represents a set of quantum numbers apart from those of angular momentum j and m. Show that $T_q^{(k)}$ acting on $|\alpha jm\rangle$ increases by q the eigenvalue of J_z .

6. Show that the matrix element of the q-th spherical tensor component of a vector operator **V** may be expressed as

$$\langle lpha' jm' | V_q | lpha jm
angle = rac{\langle lpha' jm | \mathbf{J} \cdot \mathbf{V} | lpha jm
angle}{\hbar^2 j(j+1)} \langle jm' | J_q | jm
angle,$$

where, in standard notation, **J** is the total angular momentum operator, and α denotes a set of additional quantum numbers; this result is known as the projection theorem.

7. Optional.

- (a) Express xy, xz and $(x^2 y^2)$ as the components of an irreducible spherical tensor of rank 2.
- (b) Calculate the matrix elements

$$e\langle \alpha, j, m' | (x^2 - y^2) | \alpha, j, m = j \rangle$$

in terms of the quadrupole moment, given by

$$Q \equiv e \langle \alpha, j, m = j | (3z^2 - r^2) | \alpha, j, m = j \rangle$$

 $(e\ {\rm is\ the\ electron\ charge}),\ {\rm and\ of\ the\ appropriate\ Clebsch-Gordan\ coefficients.}$

8. The electric multipole operators are defined as

$$Q_{\ell m} = \int d^3 r' Y_{\ell}^m(\hat{\mathbf{r}}') \rho(\mathbf{r}'),$$

where $\rho(\mathbf{r}) = \sum_{i} e_i \,\delta(\mathbf{r} - \mathbf{R}_i)$ is the charge density operator associated with the charge distribution e_i , i = 1, 2, ..., N, $\delta(\mathbf{r} - \mathbf{R}_i)$ is Dirac's delta function, and the \mathbf{R}_i are position operators. Show that the $Q_{\ell m}$ are irreducible tensor operators of rank ℓ . [Hint: Examine how the $Q_{\ell m}$ transform under rotations.]