IF/UFRJ
 Graduate Quantum Mechanics I 2023/2 - Raimundo

Problem Set \#12

25/10/2023 - due by 6/11/2023 at 12:00 noon

Figure 1: Problem 1 Sequence of rotations through the Euler angles; see text.

1. A rotation defined by the Euler angles, $(\alpha \beta \gamma)$, corresponds to the three successive rotations shown in Fig. 11 (1) of α around the $O z$ axis, such that $O y$ goes into $O u$; (2) of β around the $O u$ axis, such that $O z$ goes into $O Z$; (3) of γ around the $O Z$ axis, such that $O u$ goes into $O Y$. Therefore,

$$
\begin{equation*}
D(\alpha \beta \gamma)=D_{Z}(\gamma) D_{u}(\beta) D_{z}(\alpha)=\mathrm{e}^{-(i / \hbar) \gamma J_{Z}} \mathrm{e}^{-(i / \hbar) \beta J_{u}} \mathrm{e}^{-(i / \hbar) \alpha J_{z}} \tag{1}
\end{equation*}
$$

where J_{n} is the total angular momentum component along the direction $\hat{\mathbf{n}}$. Show that $D(\alpha \beta \gamma)$ can be expressed in terms of rotations around fixed axes as

$$
\begin{equation*}
D(\alpha \beta \gamma)=\mathrm{e}^{-(i / \hbar) \alpha J_{z}} \mathrm{e}^{-(i / \hbar) \beta J_{y}} \mathrm{e}^{-(i / \hbar) \gamma J_{z}} \tag{2}
\end{equation*}
$$

2. Let \mathbf{J}_{1} and \mathbf{J}_{2} be two angular momentum operators, with $\left[J_{1 \mu}, J_{2 \nu}\right] \equiv 0, \forall \mu, \nu=$ x, y, z, and $\mathbf{J}=\mathbf{J}_{1}+\mathbf{J}_{2}$, and let \mathcal{R} be an arbitrary rotation.
(a) Show that the corresponding rotation matrices satisfy the following relation

$$
\left.\begin{array}{c}
\mathcal{D}_{m^{\prime} m}^{(j)}(\mathcal{R})=\sum_{m_{1}^{\prime} m_{1}} \sum_{m_{2}^{\prime} m_{2}}\langle
\end{array}\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime} \mid j_{1} j_{2} j m^{\prime}\right\rangle\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle\right)
$$

where the $\langle\ldots \mid \ldots\rangle$ are Clebsch-Gordan coefficients.
(b) Discuss this result.
3. Consider two spins- $1 / 2, \mathbf{S}_{1}$ and \mathbf{S}_{2}, fixed in position, whose interaction is described by a Hamiltonian \mathcal{H}. Suppose the observables \mathbf{S}_{1} and \mathbf{S}_{2} undergo simultaneous and identical rotations by an angle θ around a direction $\hat{\mathbf{n}}$.
(a) Show that if $\mathcal{H}=-A \mathbf{S}_{1} \cdot \mathbf{S}_{2}$, with A a constant, then \mathcal{H} is invariant for any $\hat{\mathbf{n}}$ and θ.
(b) Show that if $\mathcal{H}=-A\left(S_{1}^{x} S_{2}^{x}+S_{1}^{y} S_{2}^{y}\right)$, with A a constant, then \mathcal{H} is invariant for $\hat{\mathbf{n}} \equiv \hat{\mathbf{z}}$ and any θ.
(c) Show that if $\mathcal{H}=-A S_{1}^{z} S_{2}^{z}$, with A a constant, then \mathcal{H} is invariant for $\hat{\mathbf{n}} \equiv \hat{\mathbf{x}}($ or $\hat{\mathbf{y}})$ and $\theta=\pi$.
(d) Comment about the main differences and similarities amongst your three findings above; try to identify cases in which the symmetry is discrete or continuous. Does the spin magnitude have any influence in your findings?
4. Consider rotations by an angle β around the $O y$ axis, for a particle with total angular momentum \mathbf{J}.
(a) Show that

$$
\sum_{m=-j}^{j} m\left|\mathcal{D}_{m m^{\prime}}^{(j)}(\beta)\right|^{2}=m^{\prime} \cos \beta
$$

where $\mathcal{D}_{m m^{\prime}}^{(j)}(\beta)$ is the matrix representation of the corresponding rotation operator.
(b) Check your results of (a) for $j=1 / 2$.
(c) Discuss the result in (a).
5. Consider a tensor operator $T_{q}^{(k)}$ and a state $|\alpha j m\rangle ; \alpha$ represents a set of quantum numbers apart from those of angular momentum j and m. Show that $T_{q}^{(k)}$ acting on $|\alpha j m\rangle$ increases by q the eigenvalue of J_{z}.
6. Show that the matrix element of the q-th spherical tensor component of a vector operator \mathbf{V} may be expressed as

$$
\left\langle\alpha^{\prime} j m^{\prime}\right| V_{q}|\alpha j m\rangle=\frac{\left\langle\alpha^{\prime} j m\right| \mathbf{J} \cdot \mathbf{V}|\alpha j m\rangle}{\hbar^{2} j(j+1)}\left\langle j m^{\prime}\right| J_{q}|j m\rangle,
$$

where, in standard notation, \mathbf{J} is the total angular momentum operator, and α denotes a set of additional quantum numbers; this result is known as the projection theorem.
7. Optional.
(a) Express $x y, x z$ and $\left(x^{2}-y^{2}\right)$ as the components of an irreducible spherical tensor of rank 2.
(b) Calculate the matrix elements

$$
e\left\langle\alpha, j, m^{\prime}\right|\left(x^{2}-y^{2}\right)|\alpha, j, m=j\rangle
$$

in terms of the quadrupole moment, given by

$$
Q \equiv e\langle\alpha, j, m=j|\left(3 z^{2}-r^{2}\right)|\alpha, j, m=j\rangle
$$

(e is the electron charge), and of the appropriate Clebsch-Gordan coefficients.
8. The electric multipole operators are defined as

$$
Q_{\ell m}=\int d^{3} r^{\prime} Y_{\ell}^{m}\left(\hat{\mathbf{r}}^{\prime}\right) \rho\left(\mathbf{r}^{\prime}\right)
$$

where $\rho(\mathbf{r})=\sum_{i} e_{i} \delta\left(\mathbf{r}-\mathbf{R}_{i}\right)$ is the charge density operator associated with the charge distribution $e_{i}, i=1,2, \ldots, N, \delta\left(\mathbf{r}-\mathbf{R}_{i}\right)$ is Dirac's delta function, and the \mathbf{R}_{i} are position operators. Show that the $Q_{\ell m}$ are irreducible tensor operators of rank ℓ. [Hint: Examine how the $Q_{\ell m}$ transform under rotations.]

