IF/UFRJ
 Graduate Quantum Mechanics I 2023/2 - Raimundo

Problem Set \#11

> 18/10/2023 - due by 30/10/2023 at 12:00 noon

1. Let $|n\rangle$ be an eigenstate of a Hamiltonian \mathcal{H}, corresponding to the eigenvalue E_{n}, and let U be a symmetry operation which leaves \mathcal{H} invariant. Show that if $U|n\rangle$ represents a state distinct from $|n\rangle$, then E_{n} is doubly degenerate. Generalise this result for the case of an operator $U(\lambda)$ which depends continuously on a parameter λ.
2. Consider a time-dependent infinitesimal transformation,

$$
U=1-\frac{i}{\hbar} G(t) \delta \lambda .
$$

(a) What relation must be satisfied by the generator $G(t)$ so that the physical system is invariant under this transformation?
(b) Obtain the generator of infinitesimal translations for a particle of mass m and charge q in the presence of an electric field \mathbf{E}. [Hint: Examine the classical Hamilton's equations.]
3. Consider the scale transformation

$$
\begin{equation*}
\psi(x) \longrightarrow \lambda^{1 / 2} \psi(\lambda x), \lambda \in \mathbb{R}>0 . \tag{1}
\end{equation*}
$$

(a) Show that it is unitary.
(b) Obtain the infinitesimal generator.
(c) From now on consider, in particular, the Hamiltonian

$$
\begin{equation*}
\mathcal{H}=\frac{p^{2}}{2 m}+\frac{1}{2} \frac{k}{x^{2}} . \tag{2}
\end{equation*}
$$

Show that $\mathcal{H}^{\prime}=\mathcal{H} / \lambda^{2}$.
(d) Show that the above transformation is a symmetry of the problem, provided time also undergoes a scale change.
(e) Obtain the explicit time dependence of the generator of this symmetry.
4. A particle moves in a periodic one-dimensional potential, $V(x \pm a)=V(x)$; physically, this may represent the motion of non-interacting electrons in a crystal lattice. Let us call $|n\rangle, n=0, \pm 1, \pm 2, \ldots, \pm N$, the states representing a particle located at site n, with $\left\langle n^{\prime} \mid n\right\rangle=\delta_{n, n^{\prime}}$. Let \mathcal{H} be the system Hamiltonian and $U(a)$ the discrete translation operator: $U(a)|n\rangle=|n+1\rangle$. In the tightbinding approximation, one neglects the overlap of electron states separated by a distance larger than a, so that

$$
\mathcal{H}|n\rangle=E_{0}|n\rangle-\Delta(|n+1\rangle+|n-1\rangle),
$$

where E_{0} is the energy of a particle located in any site, and Δ is the energy associated with the hopping between atomic orbitals centred on lattice sites.
(a) Show that the linear combination

$$
|\theta\rangle=\sum_{n=-N}^{N} \mathrm{e}^{i n \theta}|n\rangle
$$

is an eigenvector of both $U(a)$, with eigenvalue $\mathrm{e}^{-i \theta}$, and of \mathcal{H}, with eigenvalue $E(\theta)=E_{0}-2 \Delta \cos \theta$.
(b) Show that the wave function associated with $|\theta\rangle$ satisfies Bloch's Theorem.

