IF/UFRJ
 Graduate Quantum Mechanics I 2023/2 - Raimundo

Problem Set \#10

$$
9 / 10 / 2023 \text { - due by } 16 / 10 / 2023 \text { at 12:00 noon }
$$

1. For a spin- $1 / 2$ particle we denote by \mathbf{S} its spin and by \mathbf{L} its orbital angular momentum. If its state vector is $|\psi\rangle$, the two functions $\psi_{+}(\mathbf{r})$ and $\psi_{-}(\mathbf{r})$ are defined by

$$
\begin{equation*}
\psi_{ \pm}(\mathbf{r})=\langle\mathbf{r}, \pm \mid \psi\rangle . \tag{1}
\end{equation*}
$$

Let us assume that

$$
\begin{align*}
& \psi_{+}(\mathbf{r})=R(r)\left[Y_{0}^{0}(\theta, \varphi)+\frac{1}{\sqrt{3}} Y_{1}^{0}(\theta, \varphi)\right] \tag{2}\\
& \psi_{-}(\mathbf{r})=\frac{1}{\sqrt{3}} R(r)\left[Y_{1}^{1}(\theta, \varphi)-\frac{1}{\sqrt{3}} Y_{1}^{0}(\theta, \varphi)\right], \tag{3}
\end{align*}
$$

where (r, θ, φ) are the usual spherical coordinates and $R(r)$ is a given function of r.
(a) What condition must $R(r)$ satisfy to render $|\psi\rangle$ normalised?
(b) Suppose S^{z} is measured with the particle in the state $|\psi\rangle$. Which results can be found, and with what probabilities? Repeat this question for L^{z} and then for S^{x}.
(c) A measurement of \mathbf{L}^{2} is carried out with the particle in state $|\psi\rangle$, and the result is zero; which is the state just after this measurement? Repeat this question assuming the result of the measurement was $2 \hbar^{2}$.
2. We have already seen that the angular momentum operators, J_{z} and $J_{ \pm}$, when expressed on the basis $\{|\alpha j m\rangle\}$, where α represents a set of quantum numbers needed to univocally specify the basis states, they are represented by a blockdiagonal matrix, each block with dimension $2 j+1$. Consider then the operator

$$
\begin{equation*}
D_{\hat{\mathbf{n}}}(\theta) \equiv \exp (-i \hat{\mathbf{n}} \cdot \mathbf{J} \theta / \hbar) \tag{1}
\end{equation*}
$$

where $\hat{\mathbf{n}}$ denotes a given spatial direction. Show that the matrices representing $D_{\hat{\mathbf{n}}}(\theta)$, on the same basis, is also block-diagonal, and with the same dimensions as the representations for \mathbf{J}.
3. The spin-orbit (SO) interaction in the Hydrogen atom has its origin in the fact that in its own rest frame the electron feels a magnetic field due to the proton motion; hence this field is proportional to the electron orbital angular momentum, \mathbf{L}. The SO interaction describes the orientational potential energy of the electron spin in this magnetic field and may be written as

$$
\begin{equation*}
\mathcal{H}_{\mathrm{SO}}=\lambda \mathbf{s} \cdot \mathbf{L}, \tag{1}
\end{equation*}
$$

where \mathbf{s} is the electron spin operator, and for our purposes here we may consider λ as a constant. Assuming the electron is in a state ℓ of orbital angular momentum, which are the possible energy levels of $\mathcal{H}_{\text {SO }}$ and their corresponding degeneracies?
4. Consider a system with two spin- $1 / 2$ particles whose orbital variables are neglected. The Hamiltonian for this system is

$$
\begin{equation*}
\mathcal{H}=\omega_{1} S_{1}^{z}+\omega_{2} S_{2}^{z} \tag{1}
\end{equation*}
$$

where S_{i}^{z} is the projection of $\mathbf{S}_{i}, i=1,2$, along the direction $\hat{\mathbf{z}}$, and ω_{1} and ω_{2} are constants.
(a) The state of the system at the instant $t=0$, is

$$
\begin{equation*}
|\psi\rangle=\frac{1}{\sqrt{2}}[|+-\rangle+|-+\rangle] \tag{2}
\end{equation*}
$$

in standard notation. At time $t, \mathbf{S}^{2}=\left(\mathbf{S}_{1}+\mathbf{S}_{2}\right)^{2}$ is measured. What are the possible outcomes, and with what probabilities?
(b) If the initial state of the system is arbitrary, what Bohr frequencies can appear in the evolution of $\left\langle\mathbf{S}^{2}\right\rangle$? Same question for $S_{x}=S_{1}^{x}+S_{2}^{x}$.
5. Three spin- $1 / 2$ particles are fixed in position, and let $\mathbf{S}_{i}, i=1,2,3$, be their corresponding spin operators.
(a) What is the dimension of the state space for this system?
(b) Define

$$
\begin{equation*}
\mathbf{S}_{13} \equiv \mathbf{S}_{1}+\mathbf{S}_{3} \tag{1}
\end{equation*}
$$

Which are the possible values of the associated quantum numbers S_{13} and m_{13} ?

(a)

(b)

Figure 1: Problem 3 - Three interacting localised spins: (a) open ends; (b) periodic boundary conditions.
(c) The total angular momentum operator can therefore be expressed as

$$
\begin{equation*}
\mathbf{S}=\mathbf{S}_{13}+\mathbf{S}_{2} \tag{2}
\end{equation*}
$$

Which are the possible values of the associated quantum numbers S and m ? How many states are generated this way?
(d) In addition to S and m, which quantum numbers must be specified in order to uniquely label the states?
(e) Assume these three spins are placed on a straight line [Fig. [1/(a)], and the Hamiltonian describing their (exchange) interaction is

$$
\begin{equation*}
\mathcal{H}_{\mathrm{open}}=-A\left(\mathbf{S}_{1} \cdot \mathbf{S}_{2}+\mathbf{S}_{2} \cdot \mathbf{S}_{3}\right), \tag{3}
\end{equation*}
$$

where $A<0$ is a constant (in units of energy $/ \hbar^{2}$). Determine the lowest energy and the ground state [expressed in terms of states labelled as described in (d)], including its degeneracy. Express the ground state(s) in the basis $\left|S_{1} m_{1} S_{2} m_{2} S_{3} m_{3}\right\rangle$ (or $\left|m_{1} m_{2} m_{3}\right\rangle$ for short, since all $S_{i}=1 / 2$), and discuss its (their) nature.
(f) Now assume the spins are placed on a ring [Fig.11(b)], so that the Hamiltonian describing their (exchange) interaction is

$$
\begin{equation*}
\mathcal{H}_{\mathrm{PBC}}=-A\left(\mathbf{S}_{1} \cdot \mathbf{S}_{2}+\mathbf{S}_{2} \cdot \mathbf{S}_{3}+\mathbf{S}_{3} \cdot \mathbf{S}_{1}\right) \tag{4}
\end{equation*}
$$

where $A<0$ is a constant (in units of energy $/ \hbar^{2}$); PBC stands for periodic boundary conditions. Determine the lowest energy and the ground state [expressed in terms of states labelled as described in (d)], including its degeneracy. Express the ground state(s) in the basis $\left|S_{1} m_{1} S_{2} m_{2} S_{3} m_{3}\right\rangle$ (or $\left|m_{1} m_{2} m_{3}\right\rangle$ for short, since all $S_{i}=1 / 2$), and discuss its (their) nature.

