IF/UFRJ Graduate Quantum Mechanics I 2023/2 – Raimundo

Problem Set #9

2/10/2023 - due by 16/10/2023 at 12:00 noon

- 1. (a) Show that if a system is in an eigenstate of J_z , then the expectation values of the operators J_x and J_y are zero.
 - (b) For a system in the eigenstate $|jm\rangle$ of the operator J_z , show that the expectation value of the angular momentum along a direction z', at an angle θ with the z-axis, is $m\hbar \cos \theta$.
 - (c) Show that in the state $|jm\rangle$, the largest precision in the measurement of the components J_x and J_y is obtained when |m| = j.
- 2. Consider a two-dimensional harmonic oscillator (particle of mass μ and natural frequency ω), whose Hamiltonian is

$$\mathcal{H}_{xy} = \mathcal{H}_x + \mathcal{H}_y,\tag{1}$$

with

$$\mathcal{H}_x = \frac{P_x^2}{2\mu} + \frac{1}{2}\mu\omega^2 X^2 \text{ and } \mathcal{H}_y = \frac{P_y^2}{2\mu} + \frac{1}{2}\mu\omega^2 Y^2.$$
(2)

- (a) Calculate the commutators $[\mathcal{H}_x, \mathcal{H}_y]$, $[\mathcal{H}_{xy}, \mathcal{H}_x]$, $[\mathcal{H}_x, L_x]$, $[\mathcal{H}_x, L_y]$, $[\mathcal{H}_x, L_z]$, $[\mathcal{H}_x, L_z]$, and $[\mathcal{H}_{xy}, L_z]$, where **L** is the orbital angular momentum operator.
- (b) Which of the following form CSCO's: $\{\mathcal{H}_{xy}\}, \{\mathcal{H}_x, \mathcal{H}_y\}, \{\mathcal{H}_{xy}, \mathcal{H}_x\}, \{\mathcal{H}_{xy}, L_z\}$?
- (c) Present arguments to support that the energy is given by

$$E_{xy} = (n+1)\hbar\omega$$
, where $n = n_x + n_y$, with $n_x, n_y = 0, 1, \dots, \infty$. (3)

(d) Consider the operators

$$a_x = \frac{1}{\sqrt{2}} \left(\beta X + i \frac{P_x}{\beta \hbar} \right) \text{ and } a_y = \frac{1}{\sqrt{2}} \left(\beta Y + i \frac{P_y}{\beta \hbar} \right),$$
 (4)

(where $\beta = \sqrt{m\omega/\hbar}$) and their hermitian conjugates a_x^{\dagger} and a_y^{\dagger} . Calculate the commutators $[a_i, a_j^{\dagger}]$, with i, j = x, y.

(e) Now introduce the operators

$$a_r = \frac{1}{\sqrt{2}} (a_x - ia_y)$$
 and $a_\ell = \frac{1}{\sqrt{2}} (a_x + ia_y)$, such that $N_{r,\ell} = a_{r,\ell}^{\dagger} a_{r,\ell}$, (5)

where the subscripts r and ℓ represent *right* and *left*, for reasons which will become clear below, and show that

- (i) $[a_r, a_r^{\dagger}] = [a_\ell, a_\ell^{\dagger}] = 1;$
- (ii) $\mathcal{H}_{xy} = (N_r + N_\ell + 1) \hbar \omega;$
- (iii) $L_z = (N_r N_\ell) \hbar.$
- (f) What are the possible eigenvalues, n_r and n_ℓ , of N_r and N_ℓ , respectively? (*Hint: there is no need for calculations!*)
- (g) An arbitrary state $|n_r n_\ell\rangle$, with n_r and n_ℓ quanta, is obtained from the vacuum, $|00\rangle$, through

$$|n_r n_\ell\rangle = \frac{1}{\sqrt{n_r! n_\ell!}} \left(a_r^\dagger\right)^{n_r} \left(a_\ell^\dagger\right)^{n_\ell} |00\rangle.$$
(6)

Show that $|n_r n_\ell\rangle$ is an eigenstate of \mathcal{H}_{xy} and of L_z , with eigenvalues $(n + 1)\hbar\omega$ and $m\hbar$, respectively, with $n = n_r + n_\ell$ and $m = n_r - n_\ell$. Now explain why a_r^{\dagger} and a_{ℓ}^{\dagger} create right- and left circular polarised quanta.

- (h) What is the degeneracy of \mathcal{H}_{xy} ? Show that, for a given value of n, the possible values of m are n, n-2, $n-4, \ldots, -n+2, -n$.
- 3. Optional. Let us now consider a three-dimensional oscillator,

$$\mathcal{H} = \mathcal{H}_x + \mathcal{H}_y + \mathcal{H}_z,$$

where \mathcal{H}_z is the immediate generalisation of \mathcal{H}_x (see the preceding problem) for a_z and a_z^{\dagger} .

(a) Show that \mathcal{H} may be written as

$$\mathcal{H} = (N_r + N_\ell + N_z + 3/2)\,\hbar\omega.$$

(b) Show that the operators

$$L_{z} = \hbar \left(N_{r} - N_{\ell} \right),$$

$$L_{+} = \hbar \sqrt{2} \left(a_{z}^{\dagger} a_{\ell} - a_{r}^{\dagger} a_{z} \right),$$

$$L_{-} = \hbar \sqrt{2} \left(a_{\ell}^{\dagger} a_{z} - a_{z}^{\dagger} a_{r} \right)$$

satisfy the angular momentum algebra.

(c) Show that

$$|n_r n_\ell n_z\rangle = \frac{1}{\sqrt{n_r! n_\ell! n_z!}} \left(a_r^{\dagger}\right)^{n_r} \left(a_\ell^{\dagger}\right)^{n_\ell} \left(a_z^{\dagger}\right)^{n_z} |000\rangle$$

are eigenstates of N_r , N_ℓ and N_z .

(d) The subspace \mathcal{E}_n associated with the energy E_n is spanned by the vectors $|n_r n_\ell n_z\rangle$, such that $n_r + n_\ell + n_z = n$ and

$$L^2|n_r n_\ell n_z\rangle = \ell(\ell+1)\hbar^2|n_r n_\ell n_z\rangle.$$

Show that, for a given n, the possible values of ℓ are

$$\ell = n, \ n - 2, \dots, \ 0, \ \text{if} \ n \ \text{even};$$

 $\ell = n, \ n - 2, \dots, \ 1, \ \text{if} \ n \ \text{odd}.$

4. Consider a particle, of mass μ and charge q < 0, moving under the presence of a magnetic field $\mathbf{B} = \nabla \times \mathbf{A}$, where the vector potential \mathbf{A} is a function of the observables X, Y, Z. The Hamiltonian can be cast in a form of a free particle with the replacement $\mathbf{P} \to \mathbf{P} - q\mathbf{A}$, *i.e.*,

$$\mathcal{H} = \frac{1}{2}\mu \mathbf{V}^2,$$

where the velocity operator is given by

$$\mathbf{V} = \frac{1}{\mu} \left[\mathbf{P} - q \mathbf{A} \right].$$

Consider a uniform field $\mathbf{B} = B_0 \hat{\mathbf{z}}$ and the gauge $\mathbf{A} = -\frac{1}{2} \mathbf{R} \times \mathbf{B}$.

- (a) Obtain the commutation relations between the components of **V**.
- (b) Obtain the commutation relations $[X, V_{\nu}]$, with $\nu = x, y, z$; generalise for $[Y, V_{\nu}]$ and $[Z, V_{\nu}]$.
- (c) The Hamiltonian may be written in the form $\mathcal{H} = \mathcal{H}_{\perp} + \mathcal{H}_{\parallel}$, with $[\mathcal{H}_{\perp}, \mathcal{H}_{\parallel}] = 0$, where \perp and \parallel are relative to the direction of **B**. Determine \mathcal{H}_{\perp} and \mathcal{H}_{\parallel} .
- (d) What is the form of the eigenvalues of \mathcal{H}_{\parallel} ? Do they form a continuum or discrete spectrum?
- (e) Determine the operators Q and S, such that [Q, S] = i and which allow us to write

$$\mathcal{H}_{\perp} = \lambda \left(Q^2 + S^2 \right),$$

where λ is a constant with dimension of energy (express it in terms of the parameters of the problem!).

(f) Let $|\phi_{\perp}\rangle$ be an eigenstate of \mathcal{H}_{\perp} corresponding to the eigenvalue E_{\perp} . Show that the kets

$$|\phi'_{\perp}\rangle = \frac{1}{\sqrt{2}}(Q+iS)|\phi_{\perp}\rangle \text{ and } |\phi''_{\perp}\rangle = \frac{1}{\sqrt{2}}(Q-iS)|\phi_{\perp}\rangle$$

are eigenstates of \mathcal{H}_{\perp} , and express its eigenvalues in terms of E_{\perp} and the other parameters. From this infer an expression for the eigenvalues E_{\perp} of \mathcal{H}_{\perp} .

- (g) Obtain an expression for the eigenvalues of \mathcal{H} . Discuss the degeneracies.
- (h) Discuss physically the results obtained.