IF/UFRJ
 Graduate Quantum Mechanics I 2023/2 - Raimundo

Problem Set \#9

2/10/2023 - due by 16/10/2023 at 12:00 noon

1. (a) Show that if a system is in an eigenstate of J_{z}, then the expectation values of the operators J_{x} and J_{y} are zero.
(b) For a system in the eigenstate $|j m\rangle$ of the operator J_{z}, show that the expectation value of the angular momentum along a direction z^{\prime}, at an angle θ with the z-axis, is $m \hbar \cos \theta$.
(c) Show that in the state $|j m\rangle$, the largest precision in the measurement of the components J_{x} and J_{y} is obtained when $|m|=j$.
2. Consider a two-dimensional harmonic oscillator (particle of mass μ and natural frequency ω), whose Hamiltonian is

$$
\begin{equation*}
\mathcal{H}_{x y}=\mathcal{H}_{x}+\mathcal{H}_{y}, \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathcal{H}_{x}=\frac{P_{x}^{2}}{2 \mu}+\frac{1}{2} \mu \omega^{2} X^{2} \text { and } \mathcal{H}_{y}=\frac{P_{y}^{2}}{2 \mu}+\frac{1}{2} \mu \omega^{2} Y^{2} \tag{2}
\end{equation*}
$$

(a) Calculate the commutators $\left[\mathcal{H}_{x}, \mathcal{H}_{y}\right],\left[\mathcal{H}_{x y}, \mathcal{H}_{x}\right],\left[\mathcal{H}_{x}, L_{x}\right],\left[\mathcal{H}_{x}, L_{y}\right],\left[\mathcal{H}_{x}, L_{z}\right]$, [$\left.\mathcal{H}_{x y}, L_{x}\right]$, and $\left[\mathcal{H}_{x y}, L_{z}\right]$, where \mathbf{L} is the orbital angular momentum operator.
(b) Which of the following form CSCO's: $\left\{\mathcal{H}_{x y}\right\},\left\{\mathcal{H}_{x}, \mathcal{H}_{y}\right\},\left\{\mathcal{H}_{x y}, \mathcal{H}_{x}\right\},\left\{\mathcal{H}_{x y}, L_{z}\right\}$?
(c) Present arguments to support that the energy is given by

$$
\begin{equation*}
E_{x y}=(n+1) \hbar \omega, \text { where } n=n_{x}+n_{y}, \text { with } n_{x}, n_{y}=0,1, \ldots, \infty \tag{3}
\end{equation*}
$$

(d) Consider the operators

$$
\begin{equation*}
a_{x}=\frac{1}{\sqrt{2}}\left(\beta X+i \frac{P_{x}}{\beta \hbar}\right) \text { and } a_{y}=\frac{1}{\sqrt{2}}\left(\beta Y+i \frac{P_{y}}{\beta \hbar}\right), \tag{4}
\end{equation*}
$$

(where $\beta=\sqrt{m \omega / \hbar}$) and their hermitian conjugates a_{x}^{\dagger} and a_{y}^{\dagger}. Calculate the commutators $\left[a_{i}, a_{j}^{\dagger}\right]$, with $i, j=x, y$.
(e) Now introduce the operators

$$
\begin{equation*}
a_{r}=\frac{1}{\sqrt{2}}\left(a_{x}-i a_{y}\right) \text { and } a_{\ell}=\frac{1}{\sqrt{2}}\left(a_{x}+i a_{y}\right), \text { such that } N_{r, \ell}=a_{r, \ell}^{\dagger} a_{r, \ell}, \tag{5}
\end{equation*}
$$

where the subscripts r and ℓ represent right and left, for reasons which will become clear below, and show that
(i) $\left[a_{r}, a_{r}^{\dagger}\right]=\left[a_{\ell}, a_{\ell}^{\dagger}\right]=1$;
(ii) $\mathcal{H}_{x y}=\left(N_{r}+N_{\ell}+1\right) \hbar \omega$;
(iii) $L_{z}=\left(N_{r}-N_{\ell}\right) \hbar$.
(f) What are the possible eigenvalues, n_{r} and n_{ℓ}, of N_{r} and N_{ℓ}, respectively? (Hint: there is no need for calculations!)
(g) An arbitrary state $\left|n_{r} n_{\ell}\right\rangle$, with n_{r} and n_{ℓ} quanta, is obtained from the vacuum, $|00\rangle$, through

$$
\begin{equation*}
\left|n_{r} n_{\ell}\right\rangle=\frac{1}{\sqrt{n_{r}!n_{\ell}!}}\left(a_{r}^{\dagger}\right)^{n_{r}}\left(a_{\ell}^{\dagger}\right)^{n_{\ell}}|00\rangle . \tag{6}
\end{equation*}
$$

Show that $\left|n_{r} n_{\ell}\right\rangle$ is an eigenstate of $\mathcal{H}_{x y}$ and of L_{z}, with eigenvalues $(n+$ 1) $\hbar \omega$ and $m \hbar$, respectively, with $n=n_{r}+n_{\ell}$ and $m=n_{r}-n_{\ell}$. Now explain why a_{r}^{\dagger} and a_{ℓ}^{\dagger} create right- and left circular polarised quanta.
(h) What is the degeneracy of $\mathcal{H}_{x y}$? Show that, for a given value of n, the possible values of m are $n, n-2, n-4, \ldots,-n+2,-n$.
3. Optional. Let us now consider a three-dimensional oscillator,

$$
\mathcal{H}=\mathcal{H}_{x}+\mathcal{H}_{y}+\mathcal{H}_{z},
$$

where \mathcal{H}_{z} is the immediate generalisation of \mathcal{H}_{x} (see the preceding problem) for a_{z} and a_{z}^{\dagger}.
(a) Show that \mathcal{H} may be written as

$$
\mathcal{H}=\left(N_{r}+N_{\ell}+N_{z}+3 / 2\right) \hbar \omega .
$$

(b) Show that the operators

$$
\begin{aligned}
L_{z} & =\hbar\left(N_{r}-N_{\ell}\right), \\
L_{+} & =\hbar \sqrt{2}\left(a_{z}^{\dagger} a_{\ell}-a_{r}^{\dagger} a_{z}\right), \\
L_{-} & =\hbar \sqrt{2}\left(a_{\ell}^{\dagger} a_{z}-a_{z}^{\dagger} a_{r}\right)
\end{aligned}
$$

satisfy the angular momentum algebra.
(c) Show that

$$
\left|n_{r} n_{\ell} n_{z}\right\rangle=\frac{1}{\sqrt{n_{r}!n_{\ell}!n_{z}!}}\left(a_{r}^{\dagger}\right)^{n_{r}}\left(a_{\ell}^{\dagger}\right)^{n_{\ell}}\left(a_{z}^{\dagger}\right)^{n_{z}}|000\rangle
$$

are eigenstates of N_{r}, N_{ℓ} and N_{z}.
(d) The subspace \mathcal{E}_{n} associated with the energy E_{n} is spanned by the vectors $\left|n_{r} n_{\ell} n_{z}\right\rangle$, such that $n_{r}+n_{\ell}+n_{z}=n$ and

$$
L^{2}\left|n_{r} n_{\ell} n_{z}\right\rangle=\ell(\ell+1) \hbar^{2}\left|n_{r} n_{\ell} n_{z}\right\rangle
$$

Show that, for a given n, the possible values of ℓ are

$$
\begin{aligned}
& \ell=n, n-2, \ldots, 0, \text { if } n \text { even; } \\
& \ell=n, n-2, \ldots, 1, \text { if } n \text { odd. }
\end{aligned}
$$

4. Consider a particle, of mass μ and charge $q<0$, moving under the presence of a magnetic field $\mathbf{B}=\nabla \times \mathbf{A}$, where the vector potential \mathbf{A} is a function of the observables X, Y, Z. The Hamiltonian can be cast in a form of a free particle with the replacement $\mathbf{P} \rightarrow \mathbf{P}-q \mathbf{A}$, i.e.,

$$
\mathcal{H}=\frac{1}{2} \mu \mathbf{V}^{2},
$$

where the velocity operator is given by

$$
\mathbf{V}=\frac{1}{\mu}[\mathbf{P}-q \mathbf{A}] .
$$

Consider a uniform field $\mathbf{B}=B_{0} \hat{\mathbf{z}}$ and the gauge $\mathbf{A}=-\frac{1}{2} \mathbf{R} \times \mathbf{B}$.
(a) Obtain the commutation relations between the components of \mathbf{V}.
(b) Obtain the commutation relations $\left[X, V_{\nu}\right]$, with $\nu=x, y, z$; generalise for $\left[Y, V_{\nu}\right]$ and $\left[Z, V_{\nu}\right]$.
(c) The Hamiltonian may be written in the form $\mathcal{H}=\mathcal{H}_{\perp}+\mathcal{H}_{\|}$, with $\left[\mathcal{H}_{\perp}, \mathcal{H}_{\|}\right]=$ 0 , where \perp and $\|$ are relative to the direction of \mathbf{B}. Determine \mathcal{H}_{\perp} and $\mathcal{H}_{\|}$.
(d) What is the form of the eigenvalues of $\mathcal{H}_{\|}$? Do they form a continuum or discrete spectrum?
(e) Determine the operators Q and S, such that $[Q, S]=i$ and which allow us to write

$$
\mathcal{H}_{\perp}=\lambda\left(Q^{2}+S^{2}\right),
$$

where λ is a constant with dimension of energy (express it in terms of the parameters of the problem!).
(f) Let $\left|\phi_{\perp}\right\rangle$ be an eigenstate of \mathcal{H}_{\perp} corresponding to the eigenvalue E_{\perp}. Show that the kets

$$
\left|\phi_{\perp}^{\prime}\right\rangle=\frac{1}{\sqrt{2}}(Q+i S)\left|\phi_{\perp}\right\rangle \text { and }\left|\phi_{\perp}^{\prime \prime}\right\rangle=\frac{1}{\sqrt{2}}(Q-i S)\left|\phi_{\perp}\right\rangle
$$

are eigenstates of \mathcal{H}_{\perp}, and express its eigenvalues in terms of E_{\perp} and the other parameters. From this infer an expression for the eigenvalues E_{\perp} of \mathcal{H}_{\perp}.
(g) Obtain an expression for the eigenvalues of \mathcal{H}. Discuss the degeneracies.
(h) Discuss physically the results obtained.

