IF/UFRJ Graduate Quantum Mechanics I 2023/2 – Raimundo

Problem Set #7

18/9/2023 - due by 25/9/2023 at 12:00 noon

1. A spin-1/2 particle has a magnetic moment $\boldsymbol{\mu} = \gamma \mathbf{S}$, where \mathbf{S} is the spin operator and γ is the gyromagnetic ratio. The spin space is described by the kets $|+\rangle$ and $|-\rangle$, eigenstates of S^z with eigenvalues $\pm \hbar/2$. At the instant t = 0 the system is in the state

$$\psi(t=0)\rangle = |+\rangle. \tag{1}$$

- (a) If the observable S^x is measured at t = 0, which results can be obtained, and with what probabilities?
- (b) Instead of performing the measurement in the previous item, we let the system evolve under the influence of a magnetic field pointing along Oy, with magnitude B_0 . Determine the state of the system (in the basis $\{|\pm\rangle\}$) at an instant t.
- (c) At this instant t, we measure the observables S^x , S^y and S^z . What values can we find, and with what probabilities? What relation between B_0 and tmust be satisfied so that the result of one of the measurements is certain? Can you provide a physical interpretation for this condition?
- 2. Consider a spin-1/2 particle with a magnetic moment $\boldsymbol{\mu} = \gamma \mathbf{S}$, where \mathbf{S} is the spin operator and γ is the gyromagnetic ratio, in the presence of a magnetic field \mathbf{B}_0 , with components $B_x = -\omega_x/\gamma$, $B_y = -\omega_y/\gamma$, and $B_z = -\omega_z/\gamma$. Let us define $\omega_0 = -\gamma |\mathbf{B}_0|$.
 - (a) Show that the time evolution operator for this spin is $U(t,0) = e^{-i\Omega t}$, with

$$\Omega = \frac{1}{\hbar} \left[\omega_x S^x + \omega_y S^y + \omega_z S^z \right] = \frac{1}{2} \left[\omega_x \sigma^x + \omega_y \sigma^y + \omega_z \sigma^z \right].$$
(1)

Calculate the matrix representing Ω in the basis $\{|\pm\rangle\}$ of eigenstates of S^z . Show that

$$\Omega^{2} = \frac{1}{4} \left[\omega_{x}^{2} + \omega_{y}^{2} + \omega_{z}^{2} \right] \mathbb{1} = \left(\frac{\omega_{0}}{2} \right)^{2} \mathbb{1}.$$
 (2)

(b) Express the evolution operator in the form

$$U(t,0) = \cos\left(\frac{\omega_0 t}{2}\right) - \frac{2i}{\omega_0} \Omega \sin\left(\frac{\omega_0 t}{2}\right).$$
(3)

(c) Consider a spin which, at instant t = 0, is in the state $|\psi(0)\rangle = |+\rangle$. Show that the probability $\mathcal{P}_{++}(t)$ of finding it in the state $|+\rangle$ at time t is

$$\mathcal{P}_{++}(t) = |\langle +|U(t,0)|+\rangle|^2, \tag{4}$$

and obtain the relation

$$\mathcal{P}_{++}(t) = 1 - \frac{\omega_x^2 + \omega_y^2}{\omega_0^2} \sin^2\left(\frac{\omega_0 t}{2}\right).$$
(5)

Provide a geometrical interpretation.

3. Consider a system composed by two spins-1/2, \mathbf{S}_1 and \mathbf{S}_2 , and the basis composed by the four kets $|\pm, \pm\rangle$. At the instant t = 0 the system is in the state

$$|\psi(0)\rangle = \frac{1}{2}|++\rangle + \frac{1}{2}|+-\rangle + \frac{1}{\sqrt{2}}|--\rangle.$$
 (1)

- (a) At time t = 0 one measures S_1^z ; what is the probability of finding $-\hbar/2$? What is the state of the system after this measurement? If we then measure S_1^x , what results can be found and with what probabilities? Answer the same questions for the case in which the measurement of S_1^z led to $+\hbar/2$.
- (b) Now suppose that when the system is in the state $|\psi(0)\rangle$ described above, S_1^z and S_2^z are simultaneously measured. What is the probability of finding identical results? And opposite results?
- (c) Suppose that instead of performing the previous measurements, we let the system evolve under the influence of the Hamiltonian

$$\mathcal{H} = \omega_1 S_1^z + \omega_2 S_2^z. \tag{2}$$

What is the state of the system at time t? Evaluate the expectation values $\langle \mathbf{S}_1 \rangle$ and $\langle \mathbf{S}_2 \rangle$. Provide a physical interpretation.

- (d) Show that the magnitude of the vectors $\langle \mathbf{S}_1 \rangle$ and $\langle \mathbf{S}_2 \rangle$ are smaller than $\hbar/2$. What must be the form of $|\psi(0)\rangle$ so that each of these magnitudes is equal to $\hbar/2$?
- 4. A molecule consists of six atoms fixed in position, forming a regular hexagon. An electron can be localised in each atom, and let $|\phi_n\rangle$ be the state in which the localisation occurs in atom n, n = 1, 2, ... 6. The electronic states are restricted to the space spanned by the kets $|\phi_n\rangle$, assumed orthonormalised.
 - (a) Define an operator R through the following relations

$$R|\phi_1\rangle = |\phi_2\rangle, \ R|\phi_2\rangle = |\phi_3\rangle, \dots, \ R|\phi_6\rangle = |\phi_1\rangle. \tag{1}$$

Determine the eigenvalues and eigenvectors of R. Show that these eigevectors form a basis in the state space.

(b) When we neglect the hopping of the electron between the atoms, the system is described by a Hamiltonian \mathcal{H}_0 , whose eigenvectors are the $|\phi_n\rangle$, all with the same energy E_0 . The electron hopping can be described by a perturbation W, given by

$$W|\phi_n\rangle = -\lambda \left(|\phi_{n-1}\rangle + |\phi_{n+1}\rangle\right); \ |\phi_7\rangle \equiv |\phi_1\rangle, \text{ and } |\phi_0\rangle \equiv |\phi_6\rangle.$$
(2)

Show that R commutes with the total Hamiltonian, $\mathcal{H} = \mathcal{H}_0 + W$. Use this fact to determine the eigenvectors and eigenvalues of \mathcal{H} ; in these eigenstates, is the electron localised? Apply these ideas to the benzene molecule.