IF/UFRJ Graduate Quantum Mechanics I 2023/2 – Raimundo

Problem Set #6

11/9/2023 - due by 18/9/2023 at 12:00 noon

1. Consider a system with two spin-1/2 particles in a triplet state

$$|T\rangle = \frac{1}{\sqrt{2}} \left[|\uparrow\rangle_{(1)}|\downarrow\rangle_{(2)} + |\downarrow\rangle_{(1)}|\uparrow\rangle_{(2)} \right],\tag{1}$$

where $|\uparrow\rangle_{(i)}$ and $|\downarrow\rangle_{(i)}$ represent eigenstates of $S^{z}_{(i)}$ with eigenvalues $\pm\hbar/2$, respectively, and with i = 1, 2 denoting particles (1) and (2).

- (a) Suppose that measurements of $S_{(1)}^z$ and $S_{(2)}^z$ are made simultaneously. Which are the possible outcomes? Once obtaining the result $S (=\uparrow \text{ or } \downarrow)$ for particle (1), what is the probability of obtaining necessarily -S for particle (2)?
- (b) Is it possible to write the state $|T\rangle$ as a tensor product of states, i.e., $|T\rangle = |a\rangle_{(1)} \otimes |b\rangle_{(2)}$? If so, determine $|a\rangle_{(1)}$ and $|b\rangle_{(2)}$.
- (c) Now suppose the system is in the state

$$|\psi\rangle = \frac{1}{2} \left[|\uparrow\rangle_{(1)}|\uparrow\rangle_{(2)} + |\downarrow\rangle_{(1)}|\downarrow\rangle_{(2)} + |\uparrow\rangle_{(1)}|\downarrow\rangle_{(2)} + |\downarrow\rangle_{(1)}|\uparrow\rangle_{(2)} \right].$$
(2)

Repeat item (b) for $|\psi\rangle$.

- (d) Repeat item (a) for $|\psi\rangle$.
- (e) Comment on the differences between $|T\rangle$ and $|\psi\rangle$.

- 2. Consider a system with two spin-1/2 particles.¹
 - (a) Assume the system is in the state $|\psi\rangle = |\uparrow\uparrow\rangle$. Is this an entangled state?
 - (b) Write down the density matrix, ρ , in the $|\sigma_1 \sigma_2\rangle$ basis, where $\sigma_i = \uparrow, \downarrow, i = 1, 2$.
 - (c) Calculate $\text{Tr}\rho$ and ρ^2 ; comment.
 - (d) Obtain $\rho_1 \equiv \text{Tr}_2 \rho$, where $\rho \equiv |\psi\rangle \langle \psi|$.
 - (e) Calculate $\text{Tr}_1\rho_1$ and ρ_1^2 ; comment.
 - (f) Suppose that instead of the previous state, the system is described by

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left[|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle\right]. \tag{1}$$

Is this an entangled state?

- (g) Write the density matrix for this system, ρ , in the $|\sigma_1 \sigma_2\rangle$ basis, where $\sigma_i = \uparrow, \downarrow, i = 1, 2$.
- (h) Calculate $\text{Tr}\rho$ and ρ^2 ; comment.
- (i) Obtain $\rho_1 \equiv \text{Tr}_2 \rho$, where $\rho \equiv |\psi\rangle \langle \psi|$.
- (j) Calculate $\text{Tr}_1 \rho_1$ and ρ_1^2 ; comment.
- (k) Suppose now that the density matrix is known to be

$$\rho = \frac{1}{3} \left[|\psi_1\rangle \langle \psi_1| + |\psi_2\rangle \langle \psi_2| + |\psi_3\rangle \langle \psi_3| \right], \tag{2}$$

with

$$\begin{aligned} |\psi_1\rangle &= |\uparrow\uparrow\rangle,\\ |\psi_2\rangle &= |\downarrow\downarrow\rangle,\\ |\psi_3\rangle &= \frac{1}{\sqrt{2}} \left[|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle\right]. \end{aligned}$$
(3)

Is the system in an entangled state?

- (l) Calculate $\text{Tr}\rho$ and ρ^2 ; comment.
- (m) Obtain $\rho_1 \equiv \text{Tr}_2 \rho$.
- (n) Calculate $Tr_1\rho_1$ and ρ_1^2 ; comment.
- (o) Compare the results obtained in the three cases above, and discuss.

¹Hint: whenever possible, try to express your 4×4 matrices in terms of 2×2 sub-matrices written in terms of the Pauli matrices, the identity matrix 1, and of the null matrix 0.

3. Consider three spin-1/2 particles fixed in position in the state

$$|\psi\rangle = \frac{1}{\sqrt{6}} \left[|\downarrow\uparrow\uparrow\rangle - 2|\uparrow\downarrow\uparrow\rangle + |\uparrow\uparrow\downarrow\rangle \right],\tag{1}$$

in the basis of eigenstates of $\sigma_1^z \sigma_2^z \sigma_3^z$, in standard notation.

- (a) Is this a pure state? Why?
- (b) Is this an entangled state? Why?
- (c) Determine the partial trace over spins 2 and 3. Is the first spin in a pure state? Why?
- (d) Determine the partial trace over spins 1 and 3. Is the second spin in a pure state? Why?
- (e) What can you conclude from these results?
- 4. A system is in thermodynamic equilibrium at an absolute temperature T. Therefore, the probability of finding the system in the eigenstate $|k\rangle$, such that $\mathcal{H}|k\rangle = E_k|k\rangle$, is $p_k = \exp[-\beta E_k]/Z$, where $\beta \equiv 1/k_{\rm B}T$ and Z is the partition function; the entropy is then defined in the usual way, $S = -k_{\rm B}\sum_k p_k \ln p_k$.
 - (a) Show that $S \ge 0$.
 - (b) Show that S = 0 for a pure system.
 - (c) Supposing the Hilbert space in question is finite, with dimension N_H , show that the entropy is maximum when $p_k = 1/N_H$, $\forall k$. Discuss.
 - (d) Write down, in the $\{|k\rangle\}$ basis, the density operator for the situations discussed in items (b) e (c).