IF/UFRJ
 Graduate Quantum Mechanics I 2023/2 - Raimundo

Problem Set \#6

11/9/2023 - due by 18/9/2023 at 12:00 noon

1. Consider a system with two spin- $1 / 2$ particles in a triplet state

$$
\begin{equation*}
|T\rangle=\frac{1}{\sqrt{2}}\left[|\uparrow\rangle_{(1)}|\downarrow\rangle_{(2)}+|\downarrow\rangle_{(1)}|\uparrow\rangle_{(2)}\right] \tag{1}
\end{equation*}
$$

where $|\uparrow\rangle_{(i)}$ and $|\downarrow\rangle_{(i)}$ represent eigenstates of $S_{(i)}^{z}$ with eigenvalues $\pm \hbar / 2$, respectively, and with $i=1,2$ denoting particles (1) and (2).
(a) Suppose that measurements of $S_{(1)}^{z}$ and $S_{(2)}^{z}$ are made simultaneously. Which are the possible outcomes? Once obtaining the result $S(=\uparrow$ or \downarrow) for particle (1), what is the probability of obtaining necessarily $-S$ for particle (2)?
(b) Is it possible to write the state $|T\rangle$ as a tensor product of states, i.e., $|T\rangle=|a\rangle_{(1)} \otimes|b\rangle_{(2)}$? If so, determine $|a\rangle_{(1)}$ and $|b\rangle_{(2)}$.
(c) Now suppose the system is in the state

$$
\begin{equation*}
|\psi\rangle=\frac{1}{2}\left[|\uparrow\rangle_{(1)}|\uparrow\rangle_{(2)}+|\downarrow\rangle_{(1)}|\downarrow\rangle_{(2)}+|\uparrow\rangle_{(1)}|\downarrow\rangle_{(2)}+|\downarrow\rangle_{(1)}|\uparrow\rangle_{(2)}\right] . \tag{2}
\end{equation*}
$$

Repeat item (b) for $|\psi\rangle$.
(d) Repeat item (a) for $|\psi\rangle$.
(e) Comment on the differences between $|T\rangle$ and $|\psi\rangle$.
2. Consider a system with two spin- $1 / 2$ particles ${ }^{1}$
(a) Assume the system is in the state $|\psi\rangle=|\uparrow \uparrow\rangle$. Is this an entangled state?
(b) Write down the density matrix, ρ, in the $\left|\sigma_{1} \sigma_{2}\right\rangle$ basis, where $\sigma_{i}=\uparrow, \downarrow$, $i=1,2$.
(c) Calculate $\operatorname{Tr} \rho$ and ρ^{2}; comment.
(d) Obtain $\rho_{1} \equiv \operatorname{Tr}_{2} \rho$, where $\rho \equiv|\psi\rangle\langle\psi|$.
(e) Calculate $\operatorname{Tr}_{1} \rho_{1}$ and ρ_{1}^{2}; comment.
(f) Suppose that instead of the previous state, the system is described by

$$
\begin{equation*}
|\psi\rangle=\frac{1}{\sqrt{2}}[|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle] . \tag{1}
\end{equation*}
$$

Is this an entangled state?
(g) Write the density matrix for this system, ρ, in the $\left|\sigma_{1} \sigma_{2}\right\rangle$ basis, where $\sigma_{i}=\uparrow, \downarrow, i=1,2$.
(h) Calculate $\operatorname{Tr} \rho$ and ρ^{2}; comment.
(i) Obtain $\rho_{1} \equiv \operatorname{Tr}_{2} \rho$, where $\rho \equiv|\psi\rangle\langle\psi|$.
(j) Calculate $\operatorname{Tr}_{1} \rho_{1}$ and ρ_{1}^{2}; comment.
(k) Suppose now that the density matrix is known to be

$$
\begin{equation*}
\rho=\frac{1}{3}\left[\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|+\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right], \tag{2}
\end{equation*}
$$

with

$$
\begin{align*}
\left|\psi_{1}\right\rangle & =|\uparrow \uparrow\rangle, \\
\left|\psi_{2}\right\rangle & =|\downarrow \downarrow\rangle, \\
\left|\psi_{3}\right\rangle & =\frac{1}{\sqrt{2}}[|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle] . \tag{3}
\end{align*}
$$

Is the system in an entangled state?
(l) Calculate $\operatorname{Tr} \rho$ and ρ^{2}; comment.
(m) Obtain $\rho_{1} \equiv \operatorname{Tr}_{2} \rho$.
(n) Calculate $\operatorname{Tr}_{1} \rho_{1}$ and ρ_{1}^{2}; comment.
(o) Compare the results obtained in the three cases above, and discuss.

[^0]3. Consider three spin- $1 / 2$ particles fixed in position in the state
\[

$$
\begin{equation*}
|\psi\rangle=\frac{1}{\sqrt{6}}[|\downarrow \uparrow \uparrow\rangle-2|\uparrow \downarrow \uparrow\rangle+|\uparrow \uparrow \downarrow\rangle] \tag{1}
\end{equation*}
$$

\]

in the basis of eigenstates of $\sigma_{1}^{z} \sigma_{2}^{z} \sigma_{3}^{z}$, in standard notation.
(a) Is this a pure state? Why?
(b) Is this an entangled state? Why?
(c) Determine the partial trace over spins 2 and 3 . Is the first spin in a pure state? Why?
(d) Determine the partial trace over spins 1 and 3. Is the second spin in a pure state? Why?
(e) What can you conclude from these results?
4. A system is in thermodynamic equilibrium at an absolute temperature T. Therefore, the probability of finding the system in the eigenstate $|k\rangle$, such that $\mathcal{H}|k\rangle=E_{k}|k\rangle$, is $p_{k}=\exp \left[-\beta E_{k}\right] / Z$, where $\beta \equiv 1 / k_{\mathrm{B}} T$ and Z is the partition function; the entropy is then defined in the usual way, $S=-k_{\mathrm{B}} \sum_{k} p_{k} \ln p_{k}$.
(a) Show that $S \geq 0$.
(b) Show that $S=0$ for a pure system.
(c) Supposing the Hilbert space in question is finite, with dimension N_{H}, show that the entropy is maximum when $p_{k}=1 / N_{H}, \forall k$. Discuss.
(d) Write down, in the $\{|k\rangle\}$ basis, the density operator for the situations discussed in items (b) e (c).

[^0]: ${ }^{1}$ Hint: whenever possible, try to express your 4×4 matrices in terms of 2×2 sub-matrices written in terms of the Pauli matrices, the identity matrix $\mathbb{1}$, and of the null matrix 0 .

