IF/UFRJ Graduate Quantum Mechanics I 2023/2 – Raimundo

Problem Set #5

4/8/2023 - due by 11/8/2023 at 12:00 noon

1. Optional. Consider a particle of mass m subject to the potential

$$V(x) = \begin{cases} 0, & \text{if } 0 \le x \le a \\ +\infty, & \text{if } x < 0 \text{ or } x > a \end{cases}$$

Let $|\varphi_n\rangle$ be the eigenstates of the Hamiltonian \mathcal{H} of the system, where *n* is a positive integer. Suppose that the state of the particle at time t = 0 is given by

$$|\psi(0)\rangle = a_1|\varphi_1\rangle + a_2|\varphi_2\rangle + a_3|\varphi_3\rangle + a_4|\varphi_4\rangle$$

(a) From the boundary conditions (on the wave functions) alone, show that the energy levels are given by

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2},$$

- (b) When the energy of the particle is measured in the state $|\psi(0)\rangle$, what is the probability of finding a value smaller than $3\pi^2\hbar^2/ma^2$?
- (c) What are the mean value and the root-mean-square deviation of the energy of the particle in the state $|\psi(0)\rangle$?
- (d) Calculate the state vector $|\psi(t)\rangle$ at the instant t. Do the results found in (b) and (c) at t = 0 remain valid at an arbitrary t?
- (e) Suppose that when the energy is measured, the result $8\pi^2\hbar^2/ma^2$ is found. What is the state of the system after the measurement is made? What is the result if the energy is measured again?
- 2. (a) Use Ehrenfest's theorem to obtain the explicit time evolution of the width of a free packet; the mass of the particle is m and the wave function at t = 0 is assumed to be known.

(b) Apply your result to the function

$$\psi(x,t=0) = \frac{1}{(\sigma^2 \pi)^{1/4}} e^{-x^2/2\sigma^2} e^{ik_0 x},$$
(1)

where σ and k_0 are constants. Comment on your results.

- 3. Consider a particle of mass m and charge q, moving along the x-axis, subject to a uniform electric field, $\mathbf{E} = E_0 \hat{\mathbf{x}}$.
 - (a) Integrate the Heisenberg equation of motion for the linear momentum operator, P.
 - (b) From (a) determine an operator $\Pi_H(P)$ such that $d \Pi_H/dt \equiv 0$, where the subscript H denotes 'Heisenberg picture'.
 - (c) Show that

$$\mathrm{e}^{i\,\Pi_H a/\hbar} X \mathrm{e}^{-i\,\Pi_H a/\hbar} = X + a,$$

with a a constant. Interpret physically.

4. Consider a free particle of mass m, and an operator

$$G_H = mX_H - P_H t, (1)$$

where X_H and P_H are, respectively, the position and momentum operators in Heisenberg's picture, and t is the time.

- (a) Integrate the equation of motion for G_H . Interpret your result.
- (b) Calculate $[G_H, X_H]$ and $[G_H, P_H]$.
- (c) Consider now the operator

$$W \equiv \mathbb{1} - \frac{i}{\hbar} G_H \,\delta v, \tag{2}$$

where $\mathbb{1}$ is the identity operator, and δv is a parameter with dimension of velocity, which can be considered small in the relevant scales of the problem. Obtain an expression for $\widetilde{X}_H = W^{\dagger} X_H W$, to first order in δv . Interpret your result.

5. In some systems, like in the KH_2PO_4 crystal, the hydrogen atom (H) may occupy either side of a double potential well (see Fig. 1); denote these states by $|L\rangle$ and $|R\rangle$, for left and right wells, respectively. The middle barrier is sufficiently small, so that the H atom may tunnel between these two positions.

Figure 1: Problem 5 – Schematic representation of the potential felt by the H atom, in terms of a generalised coordinate.

The motion of the H atom in this double well may therefore be approximately described by the Hamiltonian

$$\mathcal{H} = \frac{\hbar\Omega}{2} \Big[|L\rangle \langle R| + |R\rangle \langle L| \Big],\tag{1}$$

where Ω is a constant.

- (a) Express \mathcal{H} in terms of Pauli matrices; use the representation in which σ^z is diagonal. Can you identify $|L\rangle$ and $|R\rangle$ as eigenvectors of one of the Pauli matrices? Comment.
- (b) Write down the eigenvalues and eigenvectors of \mathcal{H} in terms of $|L\rangle$ and $|R\rangle$.
- (c) Write down the Heisenberg equations of motion for σ^z and σ^y .
- (d) Integrate the Heisenberg equation of motion for σ^z .
- (e) Suppose the H atom is on the left well at t = 0. Using explicitly your result from (d), write down the time dependence of the average value $\langle \sigma^z \rangle_t$.
- (f) What is the physical interpretation of Ω ?
- 6. The Hamiltonian for a one-dimensional quantum harmonic oscillator, of mass m and frequency ω , is

$$\mathcal{H} = \frac{1}{2m}P^2 + \frac{1}{2}m\omega^2 X^2. \tag{1}$$

- (a) Integrate the Heisenberg equations of motion for X and P.
- (b) From (a) write down the time dependence of the average values $\langle X \rangle_t$, $\langle P \rangle_t$ and $\langle X^2 \rangle_t$. Suppose the initial wave function $\psi(x, t = 0)$ is known, so that it is legitimate to express these average values, and any others, in terms of the initial conditions $\langle \ldots \rangle_0$, whenever necessary.
- (c) Show that when the wave function $\psi(x, t = 0)$ is even, one has $\langle X \rangle_0 = \langle P \rangle_0 = 0$. In addition, show that if the wave function is real, then $\langle XP + PX \rangle_0 = 0$.

(d) The harmonic oscillator eigenfunctions are of the form

$$\varphi_n(x) = A_n H_n(x) e^{-(m\omega/2\hbar) x^2}, \qquad (2)$$

where A_n is a normalisation constant, and $H_n(x)$ is a Hermite polynomial of degree n in x, and parity $(-1)^n$; for the ground state, in particular, one has $A_0 = (m\omega/\pi\hbar)^{1/4}$ and $H_0 = 1$. Assuming $\psi(x, t = 0) = \varphi_n(x)$, with n even, determine $\langle X \rangle_t$ and $\langle P \rangle_t$. Do these expectation values follow the classical trajectory? Comment.

(e) Evaluate the dispersion in position, $(\Delta X)_t^2 \equiv \langle (X^2 - \langle X \rangle^2) \rangle_t$, for $\psi(x, t = 0) = \varphi_0(x)$. Discuss the behaviour of the dispersion in position at short times, i.e., $t \ll 1/\omega$ Comment.