IF/UFRJ
 Graduate Quantum Mechanics I 2023/2 - Raimundo

Problem Set \#4

28/8/2023 - Due on $4 / 9 / 2023$ by 12:00 noon

1. The Hamiltonian for a particle of mass m in one-dimensional motion is

$$
\begin{equation*}
\mathcal{H}=\frac{P^{2}}{2 m}+V(X) \tag{1}
\end{equation*}
$$

where X and P are the usual position and momentum operators, respectively, satisfying $[X, P]=i \hbar$, and $V(X)$ is the potential. Let the eigenvectors of \mathcal{H} be denoted by $\left|\phi_{n}\right\rangle$, with eigenvalues E_{n}, where n is a discrete index.
(a) Show that

$$
\begin{equation*}
\left\langle\phi_{n}\right| P\left|\phi_{n^{\prime}}\right\rangle=\alpha_{n, n^{\prime}}\left\langle\phi_{n}\right| X\left|\phi_{n^{\prime}}\right\rangle, \tag{2}
\end{equation*}
$$

where $\alpha_{n, n^{\prime}}$ depends on the difference between E_{n} and $E_{n^{\prime}}$. Determine $\alpha_{n, n^{\prime}}$. [Hint: consider the commutator $[X, \mathcal{H}]$.]
(b) Assume $\left|\phi_{n}\right\rangle$ is a bound state. What can you conclude about $\langle P\rangle$?
(c) If \mathcal{H} is even, the eigenstates $\left\{\left|\phi_{n}\right\rangle\right\}$ may be chosen to have definite parity (can you show this?). In this case, what can you conclude about $\left\langle\phi_{n}\right| P\left|\phi_{n^{\prime}}\right\rangle$?
(d) Using the closure relation for this basis, show that

$$
\begin{equation*}
\left.\sum_{n^{\prime}}\left(E_{n}-E_{n^{\prime}}\right)^{2}\left|\left\langle\phi_{n}\right| X\right| \phi_{n^{\prime}}\right\rangle\left.\right|^{2}=\frac{\hbar^{2}}{m^{2}}\left\langle\phi_{n}\right| P^{2}\left|\phi_{n}\right\rangle \tag{3}
\end{equation*}
$$

where n^{\prime} runs over all states.
(e) Consider a one-dimensional harmonic oscillator. Given that $\left\langle P^{2}\right\rangle$ is finite, what restrictions must be imposed on the left-hand side (LHS) of Eq. (3)?
(f) Consider a one-dimensional potential box. Given that $\left\langle P^{2}\right\rangle$ is finite, what restrictions must be imposed on the left-hand side (LHS) of Eq. (3)?
2. Let \mathcal{H} be the Hamiltonian operator for a physical system, with eigenvectors denoted by $\left|\phi_{n}\right\rangle$, with eigenvalues E_{n}, where n is a discrete index.
(a) Show that for an arbitrary operator A, one has

$$
\begin{equation*}
\left\langle\phi_{n}\right|[A, \mathcal{H}]\left|\phi_{n}\right\rangle=0 . \tag{1}
\end{equation*}
$$

(b) Specializing to one dimension, assume \mathcal{H} is given by Eq. (1) of Prob. 1 . Then,
(i) Express the commutators $[\mathcal{H}, P],[\mathcal{H}, X]$, and $[\mathcal{H}, X P]$ in terms of X and P.
(ii) Show that the expectation value of the momentum vanishes, i.e.,

$$
\begin{equation*}
\left\langle\phi_{n}\right| P\left|\phi_{n}\right\rangle=0 . \tag{2}
\end{equation*}
$$

(iii) Establish a relation between the expectation value of the kinetic energy,

$$
\begin{equation*}
\langle K\rangle=\frac{1}{2 m}\left\langle\phi_{n}\right| P^{2}\left|\phi_{n}\right\rangle, \tag{3}
\end{equation*}
$$

and the expectation value

$$
\begin{equation*}
\langle W\rangle \equiv\left\langle\phi_{n}\right| X \frac{d V}{d X}\left|\phi_{n}\right\rangle \tag{4}
\end{equation*}
$$

(iv) Given that $\langle V\rangle=\left\langle\phi_{n}\right| V(X)\left|\phi_{n}\right\rangle$, what is the relation between $\langle V\rangle$ and $\langle K\rangle$, when $V(X)=V_{0} X^{\lambda}$, with $\lambda=2,4,6, \ldots ; V_{0}>0$?
(c) Discuss your results.
3. Virial theorem.
(a) In a one-dimensional problem, consider a particle with a Hamiltonian

$$
\begin{equation*}
\mathcal{H}=\frac{P^{2}}{2 m}+V(X), \tag{1}
\end{equation*}
$$

where the potential energy is

$$
\begin{equation*}
V(X)=\lambda X^{n} \tag{2}
\end{equation*}
$$

(i) Calculate the commutator $[\mathcal{H}, X P]$.
(ii) If there is one, or more, stationary states $|\varphi\rangle$ for the potential V, show that the mean values $\langle T\rangle$ and $\langle V\rangle$, of the kinetic and potential energies in these states satisfy the relation

$$
\begin{equation*}
2\langle T\rangle=n\langle V\rangle . \tag{3}
\end{equation*}
$$

(b) In a three-dimensional problem, \mathcal{H} is written

$$
\begin{equation*}
\mathcal{H}=\frac{\mathbf{P}^{2}}{2 m}+V(\mathbf{R}) . \tag{4}
\end{equation*}
$$

(i) Calculate the commutator $[\mathcal{H}, \mathbf{R} \cdot \mathbf{P}]$.
(ii) Assume that $V(\mathbf{R})$ is a homogeneous function of n-th order in the variables X, Y, Z. [Recall that a homogeneous function V of the n-th degree in the variables x, y, z by definition satisfies the relation

$$
\begin{equation*}
V(\alpha x, \alpha y, \alpha z)=\alpha^{n} V(x, y, z) \tag{5}
\end{equation*}
$$

and satisfies Euler's identity,

$$
\begin{equation*}
\left.x \frac{\partial V}{\partial x}+y \frac{\partial V}{\partial y}+z \frac{\partial V}{\partial z}=n V(x, y, z) .\right] \tag{6}
\end{equation*}
$$

What relation necessarily exists between the mean kinetic energy and the mean potential energy of the particle in a stationary state?
(iii) Apply this to a particle moving in a Coulomb potential $V(r)=-e^{2} / r$.
(c) Consider a system of N particles with positions \mathbf{R}_{i} and momenta $\mathbf{P}_{i}, i=$ $1,2, \ldots, N$. When their potential energy is a homogeneous function of n-th degree of the set of components X_{i}, Y_{i}, Z_{i}, can the results obtained above be generalised?
(d) Discuss your results.

