IF/UFRJ
 Graduate Quantum Mechanics I 2023/2 - Raimundo

Problem Set \#3

$21 / 8 / 2023$ - Due on $28 / 8 / 2023$ by 12:00 noon

1. Let $|\psi\rangle$ represent an arbitrary state for a particle in three-dimensional motion.
(a) Use the closure relation for the basis set $\{|\mathbf{p}\rangle\}$ to show that

$$
\begin{equation*}
\psi(\mathbf{r})=\frac{1}{(2 \pi \hbar)^{3 / 2}} \int_{-\infty}^{\infty} d^{3} p \widetilde{\psi}(\mathbf{p}) e^{i \mathbf{p} \cdot \mathbf{r} / \hbar} . \tag{1}
\end{equation*}
$$

(b) Use the closure relation for the basis set $\{|\mathbf{r}\rangle\}$ to show that

$$
\begin{equation*}
\widetilde{\psi}(\mathbf{p})=\frac{1}{(2 \pi \hbar)^{3 / 2}} \int_{-\infty}^{\infty} d^{3} r \psi(\mathbf{r}) e^{-i \mathbf{p} \cdot \mathbf{r} / \hbar} \tag{2}
\end{equation*}
$$

(c) Interpret these relations in terms of the superposition principle.
2. Consider the operators \mathbf{R} and \mathbf{P} defined by $\langle\mathbf{r}| \mathbf{R}|\psi\rangle=\mathbf{r}\langle\mathbf{r} \mid \psi\rangle$ and $\langle\mathbf{p}| \mathbf{P}|\psi\rangle=$ $\mathbf{p}\langle\mathbf{p} \mid \psi\rangle$.
(a) Show that $\langle\mathbf{r}| \mathbf{P}|\psi\rangle=-i \hbar \nabla_{\mathbf{r}}\langle\mathbf{r} \mid \psi\rangle$ and $\langle\mathbf{p}| \mathbf{R}|\psi\rangle=i \hbar \nabla_{\mathbf{p}}\langle\mathbf{p} \mid \psi\rangle$.
(b) Let $f(\mathbf{R})$ be a function of the operator \mathbf{R}, defined by $\langle\mathbf{r}| f(\mathbf{R})|\psi\rangle=f(\mathbf{r})\langle\mathbf{r} \mid \psi\rangle$. Show that if $f(\mathbf{r})$ is differentiable, then $[\mathbf{P}, f(\mathbf{R})]=-i \hbar \nabla_{\mathbf{R}} f(\mathbf{R})$.
(c) Consider now a function $g(\mathbf{P})$, and show that $[\mathbf{R}, g(\mathbf{P})]=i \hbar \nabla_{\mathbf{P}} g(\mathbf{P})$.
(d) Show that $\mathrm{e}^{i \mathbf{P} \cdot \mathbf{a} / \hbar} \mathbf{R} \mathrm{e}^{-i \mathbf{P} \cdot \mathbf{a} / \hbar}=\mathbf{R}+\mathbf{a}$, with \mathbf{a} being a constant vector.
(e) Let $\left|\mathbf{r}_{0}\right\rangle$ be a eigenstate of \mathbf{R}, corresponding to the eigenvalue \mathbf{r}_{0}. Using (d), show that $\mathrm{e}^{-i \mathbf{P} \cdot \mathbf{a} / \hbar}\left|\mathbf{r}_{0}\right\rangle$ is an eigenstate of \mathbf{R} with eigenvalue $\mathbf{r}_{\mathbf{0}}+\mathbf{a}$.
(f) Show that the wave function associated with the state $\left|\psi^{\prime}\right\rangle=e^{i \mathbf{P} \cdot \mathbf{a} / \hbar}|\psi\rangle$ is the same as the wave function associated with the state $|\psi\rangle$, but displaced by the vector \mathbf{a}; that is, $\psi^{\prime}(\mathbf{r})=\psi(\mathbf{r}+\mathbf{a})$.
(g) Discuss the physical content of the operator

$$
\begin{equation*}
U(\mathbf{a}) \equiv \mathrm{e}^{-i \mathbf{P} \cdot \mathbf{a} / \hbar} \tag{1}
\end{equation*}
$$

3. Consider the operator

$$
\begin{equation*}
R=\mathbb{1}-i \varepsilon \sigma_{x} \tag{1}
\end{equation*}
$$

with ε dimensionless and infinitesimal (i.e., $\varepsilon \ll 1$), and σ_{x} being one of the Pauli matrices, $\boldsymbol{\sigma} \equiv\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$; see Problem 4 of Set $\# 2$. Define a transformation

$$
\begin{equation*}
\sigma_{\mu}^{\prime} \equiv R^{\dagger} \sigma_{\mu} R, \quad \mu=x, y, z \tag{2}
\end{equation*}
$$

(a) Obtain an expression for σ_{z}^{\prime} to first order in ε.
(b) Obtain an expression for σ_{x}^{\prime}, to first order in ε.
(c) Obtain an expressão para σ_{y}^{\prime}, to first order in ε.
(d) Discuss and interpret your results.
4. Consider the Pauli matrices, $\boldsymbol{\sigma} \equiv\left(\sigma^{x}, \sigma^{y}, \sigma^{z}\right)$, as defined in Problem 4 of Set \#2; note that the component index now appears as a superscript, so that in what follows the subscript labels particles 1 and 2 . In the representation in which $\sigma_{i}^{z}, i=1,2$, is diagonal, they are given by

$$
\sigma_{i}^{x}=\left(\begin{array}{ll}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \quad \sigma_{i}^{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \text { and } \quad \sigma_{i}^{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Consider now a state space corresponding to two spin- $1 / 2$ particles, $\mathscr{E}=\mathscr{E}_{1} \otimes \mathscr{E}_{2}$; this space has dimension $2^{2}=4$.
(a) Define the kets in a basis in \mathscr{E} as $\left|\sigma_{1}\right\rangle \otimes\left|\sigma_{2}\right\rangle$, where the $\left|\sigma_{i}\right\rangle$ are the eigenvectors of σ_{i}^{z}, with eigenvalues $\sigma_{i}=\uparrow, \downarrow$ (or ± 1, if you wish), and $i=1,2$. Obtain a matrix representation for this basis.
(b) Using the basis of the previous item, obtain a matrix representation for $D^{z} \equiv \sigma_{1}^{z} \otimes \sigma_{2}^{z}$ and for its eigenvectors. Can you relate your results to very simple procedures of setting up a matrix representation of direct products?
(c) Using the basis in (a), obtain a matrix representation for $D^{x} \equiv \sigma_{1}^{x} \otimes \sigma_{2}^{x}$. Obtain the eigenvalues and eigenvectors of D^{x}.
(d) Using the basis in (a), obtain a matrix representation for $D^{y} \equiv \sigma_{1}^{y} \otimes \sigma_{2}^{y}$. Obtain the eigenvalues and eigenvectors of D^{y}.
(e) Show that $\left[D^{x}, D^{y}\right]=0$ and that $\left\{D^{x}, D^{y}\right\}=-2 D^{z}$. You should obtain these results both by working out matrix products and by manipulating the commutators of the Pauli matrices without resorting to a representation. Compare with the corresponding results for $\boldsymbol{\sigma}_{i}$.

