# IF/UFRJ <br> Graduate Quantum Mechanics I <br> 2023/2 - Raimundo 

Problem Set \#2
14/8/2023 - Due on $21 / 8 / 2023$ by 12:00 noon

1. The state space, $\mathcal{E}$, of a certain physical system is three-dimensional. Let $\left\{\left|u_{i}\right\rangle\right\}, i=1,2,3$, be an orthonormal basis in this space, and $\mathcal{H}$ be the system Hamiltonian. Two operators $A$ and $B$ are defined as follows:

$$
\begin{aligned}
A\left|u_{1}\right\rangle & =\left|u_{1}\right\rangle, A\left|u_{2}\right\rangle=0, A\left|u_{3}\right\rangle=-\left|u_{3}\right\rangle \\
B\left|u_{1}\right\rangle & =\left|u_{3}\right\rangle, B\left|u_{2}\right\rangle=\left|u_{2}\right\rangle, B\left|u_{3}\right\rangle=\left|u_{1}\right\rangle
\end{aligned}
$$

(a) Write down the matrices representing $A, B$, and $A^{2}$ in the $\left\{\left|u_{i}\right\rangle\right\}$ basis. Are these operators observables?
(b) Suppose $\left[\mathcal{H}, A^{2}\right]=0$. Which is the most general form of $\mathcal{H}$ ?
(c) Suppose $[\mathcal{H}, A]=0$. Which is the most general form of $\mathcal{H}$ ?
(d) Write down, in the $\left\{\left|u_{i}\right\rangle\right\}$ basis, the matrix representing the projector onto the space corresponding to the eigenvalue +1 of $A^{2}$.
(e) Do $A^{2}$ and $B$ form a CSCO ?
2. The state space, $\mathcal{E}$, of a certain physical system is four-dimensional. Let $\mathcal{H}$ be its Hamiltonian, and $\Pi$ and $R$ two observables commuting with each other, as well as with $\mathcal{H}$. A possible basis of $\mathcal{E}$ is given by the vectors $\left|u_{i}\right\rangle, i=1,4$, and the action of $\mathcal{H}, \Pi$, and $R$ on these vectors is given by

$$
\begin{aligned}
& \mathcal{H}\left|u_{1}\right\rangle=\left|u_{1}\right\rangle+\omega\left(\left|u_{3}\right\rangle+\left|u_{4}\right\rangle\right) \\
& \mathcal{H}\left|u_{2}\right\rangle=\left|u_{2}\right\rangle+\omega\left(\left|u_{3}\right\rangle+\left|u_{4}\right\rangle\right) \\
& \mathcal{H}\left|u_{3}\right\rangle=\omega\left(\left|u_{1}\right\rangle+\left|u_{2}\right\rangle\right)-\left|u_{3}\right\rangle \\
& \mathcal{H}\left|u_{4}\right\rangle=\omega\left(\left|u_{1}\right\rangle+\left|u_{2}\right\rangle\right)-\left|u_{4}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \Pi\left|u_{1}\right\rangle=\left|u_{2}\right\rangle, \quad \Pi\left|u_{2}\right\rangle=\left|u_{1}\right\rangle, \quad \Pi\left|u_{3}\right\rangle=\left|u_{4}\right\rangle, \quad \Pi\left|u_{4}\right\rangle=\left|u_{3}\right\rangle \\
& R\left|u_{1}\right\rangle=\left|u_{1}\right\rangle, \quad R\left|u_{2}\right\rangle=\left|u_{2}\right\rangle, \quad R\left|u_{3}\right\rangle=\left|u_{4}\right\rangle, \quad R\left|u_{4}\right\rangle=\left|u_{3}\right\rangle
\end{aligned}
$$

(a) Obtain a matrix representation for $\mathcal{H}, \Pi$, and $R$ in the $\left\{\left|u_{i}\right\rangle\right\}$ basis.
(b) $\Pi$ and $R$ actually represent symmetries of the problem. Take this explicitly into account in order to obtain the eigenvalues of $\mathcal{H}$.
(c) Discuss if each of the following sets forms a CSCO for any value of $\omega$ : (i) $\Pi$ and $R$; (ii) $\mathcal{H}$; (iii) $\mathcal{H}, \Pi$, and $R$.
3. Optional. Let $\mathcal{H}$ be the Hamiltonian operator, whose eigenvectors for a particular physical system are denoted by $\left|\varphi_{n}\right\rangle$, supposed to form a discrete orthonormal basis. Define an operator

$$
\begin{equation*}
U(m, n) \equiv\left|\varphi_{m}\right\rangle\left\langle\varphi_{n}\right| . \tag{1}
\end{equation*}
$$

(a) Obtain the adjoint $U^{\dagger}(m, n)$ of $U(m, n)$.
(b) Obtain $[\mathcal{H}, U]$.
(c) Show that

$$
\begin{equation*}
U(m, n) U^{\dagger}(p, q)=\delta_{n, q} U(m, p) \tag{2}
\end{equation*}
$$

(d) Obtain $\operatorname{Tr} U(m, n)$.
(e) The matrix elements of an operator $A$ in this basis are $A_{m n} \equiv\left\langle\varphi_{m}\right| A\left|\varphi_{n}\right\rangle$. Show that

$$
\begin{equation*}
A=\sum_{m, n} A_{m n} U(m, n) . \tag{3}
\end{equation*}
$$

(f) Show that

$$
\begin{equation*}
A_{p q}=\operatorname{Tr}\left[A U^{\dagger}(p, q)\right] . \tag{4}
\end{equation*}
$$

4. The Pauli matrices, $\boldsymbol{\sigma} \equiv\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$, play a very important role in the description of spin- $1 / 2$ particles, as we will see throughout this course. In the representation in which $\sigma_{z}$ is diagonal, $\{| \pm\rangle\}$, they are given by

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \text { and } \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(a) Show that these matrices are Hermitian.
(b) Show that these matrices satisfy the commutation relations

$$
\left[\sigma_{k}, \sigma_{\ell}\right]=2 i \varepsilon_{k \ell m} \sigma_{m},
$$

where the convention of summing over repeated indices is implied.
(c) Show that these matrices anticommute, i.e.

$$
\left\{\sigma_{k}, \sigma_{\ell}\right\} \equiv \sigma_{k} \sigma_{\ell}+\sigma_{\ell} \sigma_{k}=0, k \neq \ell
$$

(d) Show that $\sigma_{k}^{2}=\mathbb{1}, k=x, y, z$, where $\mathbb{1}$ is the $2 \times 2$ identity matrix.
(e) Verify that $\operatorname{Tr} \sigma_{k}=0, k=x, y, z$.
(f) Define $\sigma^{ \pm} \equiv \frac{1}{2}\left[\sigma_{x} \pm i \sigma_{y}\right]$, and show that

$$
\left[\sigma_{z}, \sigma_{ \pm}\right]= \pm \sigma_{ \pm}
$$

and

$$
\left[\sigma_{+}, \sigma_{-}\right]=\sigma_{z} .
$$

(g) Determine the outcomes of: (i) $\sigma^{x}| \pm\rangle$, (ii) $\sigma^{y}| \pm\rangle$, and (iii) $\sigma^{ \pm}| \pm\rangle$.
(h) Determine the eigenvalues and eigenvectors of $\sigma_{x}$. Comment on the influence the fact that $\sigma_{x}^{2}=1$ has on the eigenvalues you found.
(i) Obtain the matrices representing the projectors onto the eigenvectors of $\sigma_{x}$. Check that the relations of orthogonality and completeness are satisfied.
(j) Express $\sigma_{y}$ and $\sigma_{z}$ on the basis of eigenvectors of $\sigma_{x}$. You should convince yourself that the results (a)-(f) do not depend on the basis used to represent the Pauli matrices.
(k) Show that

$$
\mathrm{e}^{i \alpha \sigma_{k}}=\cos \alpha+i \sigma_{k} \sin \alpha, k=x, y, z,
$$

where $\alpha$ is expressed in radians.
(l) Show that the previous result can be generalised to

$$
\mathrm{e}^{i \alpha \hat{\mathbf{n}} \cdot \boldsymbol{\sigma}}=\cos \alpha+i \hat{\mathbf{n}} \cdot \boldsymbol{\sigma} \sin \alpha,
$$

where $\hat{\mathbf{n}}$ is a unit vector pointing in an arbitrary direction.
5. The state space of a certain physical system is three-dimensional, and let $\left\{\left|u_{i}\right\rangle\right\}, i=1,3$, be an orthonormal basis in this space. Define the kets

$$
\begin{equation*}
\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2}}\left|u_{1}\right\rangle+\frac{i}{2}\left|u_{2}\right\rangle+\frac{1}{2}\left|u_{3}\right\rangle, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{3}}\left|u_{1}\right\rangle+\frac{i}{\sqrt{3}}\left|u_{3}\right\rangle . \tag{2}
\end{equation*}
$$

(a) Are these kets normalised?
(b) Determine the matrices $\rho_{0}$ and $\rho_{1}$ which represent the projection operators onto $\left|\psi_{0}\right\rangle$ and $\left|\psi_{1}\right\rangle$, respectively. Are these matrices hermitian?
6. The state space, $\mathcal{E}$, of a certain physical system is three-dimensional. The system is described by the Hamiltonian $\mathcal{H}$, whose action on the states of an orthonormal basis in $\mathcal{E},|j\rangle, j=1,2,3$, is given by

$$
\mathcal{H}|j\rangle=-\varepsilon|j\rangle-\gamma(|j+1\rangle+|j-1\rangle), \text { with }|0\rangle \equiv|3\rangle \text { and }|4\rangle \equiv|1\rangle ;
$$

$\varepsilon$ and $\gamma$ are constants. Consider an operator $\mathcal{T}$, whose action on these basis states is given by

$$
\mathcal{T}|1\rangle=|2\rangle, \mathcal{T}|2\rangle=|3\rangle, \mathcal{T}|3\rangle=|1\rangle
$$

(a) Is $\mathcal{T}$ hermitian? If it is not, is it unitary? Is $\mathcal{T}$ an observable?
(b) Show that $\mathcal{T}^{3}=\mathbb{1}$. From this, show that the eigenvalues of $\mathcal{T}$ are

$$
\lambda_{k}=\omega^{k} \text {, with } k=0,1,2 \text {, and } \omega=\mathrm{e}^{i 2 \pi / 3} .
$$

What can you say about $\sum_{k=0}^{2} \lambda_{k}$ ?
(c) Show that the eigenvectors of $\mathcal{T}$ can be written as

$$
\left|\lambda_{k}\right\rangle=\frac{1}{\sqrt{3}} \sum_{j=1}^{3} \lambda_{k}^{-j}|j\rangle
$$

Also show that these eigenstates form an orthonormal set.
(d) Explain why the eigenvectors of $\mathcal{T}$ form a basis.
(e) Show that the Hamiltonian may be expressed as

$$
\mathcal{H}=-\varepsilon \mathbb{1}-\gamma \mathcal{T}-\gamma \mathcal{T}^{2} .
$$

(f) Show that $[\mathcal{T}, \mathcal{H}]=0$. Comment.
(g) Express $\mathcal{H}$ on the basis of eigenvectors of $\mathcal{T}$, and obtain the eigenenergies.
(h) Show that, in general, if $\mathcal{T}\left|\lambda_{j}\right\rangle=\lambda_{j}\left|\lambda_{j}\right\rangle$, with $\mathcal{T}$ unitary and such that $\lambda_{j}^{n}=1$, with $n$ a positive integer, and $[\mathcal{T}, \mathcal{H}]=0$, then $\left\langle\lambda_{j}\right| \mathcal{H}\left|\lambda_{k}\right\rangle=0$, if $\lambda_{j} \neq \lambda_{k}$. Comment.

