IF/UFRJ
 Graduate Quantum Mechanics I 2023/2 - Raimundo

Problem Set \#1

27/7/2023 - Due on $14 / 8 / 2023$ by 12:00 Noon

1. (a) Show that in one-dimensional problems the energy spectrum of bound states is always non-degenerate. [Hint: Assume ψ_{1} and ψ_{2} are degenerate eigenfunctions of the time-independent Schrödinger equation, and show that $\psi_{1}^{\prime} \psi_{2}-\psi_{1} \psi_{2}^{\prime}=$ const,, where the primes denote first derivatives with respect to x.]
(b) Discuss examples verifying the above property.
2. Let $\psi(\mathbf{r}, t)$ be an eigenfunction of the Schrödinger equation corresponding to the energy E. We will see later that the time reversed $\psi(\mathbf{r}, t)$ is obtained by taking both $t \rightarrow-t$ and the complex conjugate of $\psi(\mathbf{r}, t)$.
(a) Show that the function $\psi^{*}(\mathbf{r},-t)$ satisfies the same Schrödinger equation as $\psi(\mathbf{r}, t)$, with the same energy E.
(b) Consider a stationary solution, $\psi_{E}(\mathbf{r}) \mathrm{e}^{-i E t / \hbar}$. Show that if the eigenvalue E is non-degenerate, then $\psi_{E}(\mathbf{r})$ is real, apart from an overall constant and arbitrary complex factor.
(c) Discuss examples verifying the property derived in (b).
3. Obtain the wave functions and eigenenergies for a particle of mass m in a onedimensional box, i.e.,

$$
V= \begin{cases}0 & \text { for } 0 \leq x \leq L \\ \infty & \text { otherwise }\end{cases}
$$

Compare with the results for the case of periodic boundary conditions [i.e., $V=$ $0, \forall x$, but $\psi(x+L)=\psi(x)$], highlighting the main qualitative and quantitative differences.
4. Optional. Solve the time-independent Schrödinger equation in one dimension for the potential $V(x)=\lambda \delta(x)$. Consider the repulsive and attractive cases. For the attractive case, compare your results with the solutions for a square well in the limit $V_{0} \rightarrow \infty$ and $a \rightarrow 0$, with $V_{0} a$ finite (see, e.g., CT, Complement H_{I}). For both attractive and repulsive cases, evaluate the transmission coefficient for positive energies.
5. Optional. Show that if the momentum distribution for a free packet, $\phi(p)$, is real and the origin is chosen so that initially $\langle x\rangle=0$, then the equation

$$
\begin{equation*}
(\Delta x)^{2}=\left.(\Delta x)^{2}\right|_{t=0}+\frac{(\Delta p)^{2} t^{2}}{m^{2}} \tag{1}
\end{equation*}
$$

holds for a packet of arbitrary shape. [Hint: use the momentum representation.] One should notice the dependence of the width of the packet with the particle mass.
6. Consider a gaussian wave packet which, when $t=0$, is given by

$$
\begin{equation*}
\psi(x, 0)=\frac{1}{\left(\sigma^{2} \pi\right)^{1 / 4}} \mathrm{e}^{-x^{2} / 2 \sigma^{2}} \mathrm{e}^{i k_{0} x}, \tag{1}
\end{equation*}
$$

where σ and k_{0} are constants.
(a) Show that the momentum distribution is also gaussian;
(b) Show that this packet corresponds to the minimum uncertainty possible, $\Delta x \Delta p=\hbar / 2 ;$
(c) Show that the current density when $t=0$ is given by $j(x, 0)=\rho(x, 0) v_{0}$, where $\rho(x, 0)=|\psi(x, 0)|^{2}$ and $v_{0}=\hbar k_{0} / m$.
(d) Evaluate the wave function for a free packet when $t>0$, and show explicitly that it spreads with time according to

$$
\begin{equation*}
\Delta x(t)=\frac{\sigma}{\sqrt{2}} \sqrt{1+\left(\frac{t}{\tau}\right)^{2}}, \tag{2}
\end{equation*}
$$

where $\tau \equiv m \sigma^{2} / \hbar$ sets a time scale for the spread of the packet.
(e) Evaluate the current density for $t>0$, and compare with the result obtained in (c); check what happens at the position of the packet maximum, $x_{0}=v_{0} t$.

