Quantum decoherence, Casimir effect, quantum vacuum fluctuations

Paulo A. Maia Neto Instituto de Física, UFRJ, Rio de Janeiro, Brazil

École Doctorale QMat 182 - U. Strasbourg

December 2023

Quantum decoherence, Casimir effect, quantum vacuum fluctuations

11/12/2023

Lecture 1: Decoherence of massive particles by radiation pressure: introduction

20/12/2023 Lecture 2 Part A (cont of Lecture 1): Casimir effect, decoherence via master equation Part B: Dynamical Casimir effects with atoms

École Doctorale QMat 182 - U. Strasbourg

December 2023

Decoherence by radiation pressure: master equation, results at zero and finite temperatures

Master equation for the particle center of mass:

- radiation pressure coupling: quadratic in the electromagnetic field operators
- external harmonic potential (optical tweezer): frequency Ω

 master equation for reduced density operator of the bead CM Similar to quantum Brownian motion models -Caldeira & Leggett (1985), Unruh & Zurek (1989), Hu, Paz & Zhang (1992) Thermal field radiation pressure coupling: Joos & Zeh (1985)

<u>()</u>

DAR Dalvit and PAMN, Phys. Rev. Lett. 84 799 (2000); Phys. Rev. A62, 042103 (2000)

Master equation for the particle center of mass: equivalent to Fokker-Planck equation for the Wigner function W(x, p, t)

$$W(x, p, t) \equiv \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dy \, e^{ipy/\hbar} \langle x - y/2 \, | \, \hat{\rho} \, | \, x + y/2 \rangle$$

$$\partial_t W = -\frac{p}{m} \partial_x W + m\Omega^2 x \partial_p W + \gamma \partial_p (pW) + D \frac{\partial^2 W}{\partial p^2}$$
Unitary rotation
in phase space

$$\psi_{0} = \frac{1}{\sqrt{2}} (|\alpha_0\rangle + |-\alpha_0\rangle)$$

$$Q$$
damping diffusion

$$w_{t} = \frac{1}{\sqrt{2}} (|\alpha(t)\rangle + |-\alpha(t)\rangle)$$

DAR Dalvit and PAMN, Phys. Rev. Lett. 84 799 (2000); Phys. Rev. A62, 042103 (2000)

Master equation for the particle center of mass: equivalent to Fokker-Planck equation for the Wigner function W(x, p, t)

<u>()</u>

Master equation for the particle center of mass: equivalent to Fokker-Planck equation for the Wigner function W(x, p, t)

$$\partial_t W = -\frac{p}{m} \partial_x W + m\Omega^2 x \partial_p W + \gamma \partial_p (pW) + D \frac{\partial^2 W}{\partial p^2}$$

 \mathbb{S}

Decoherence from diffusion in phase space

The less classical the state is, the faster is decoherence

DAR Dalvit and PAMN, Phys. Rev. Lett. 84 799 (2000); Phys. Rev. A62, 042103 (2000)

Decoherence time t_{dec}

$$\frac{1}{t_{\rm dec}} = D \left(\frac{\Delta x}{\hbar}\right)^2$$

Low tem

Position

Low temperature
$$k_B T \ll \hbar \Omega$$

Position uncertainty of ground state $(\Delta X)_{\text{ZPF}}$:
 $(\Delta X)_{\text{ZPF}} = \sqrt{\frac{\hbar}{2m\Omega}} \qquad \frac{1}{t_{\text{dec}}} = \left(\frac{\Delta x}{(\Delta X)_{\text{ZPF}}}\right)^2 \gamma(T=0)$

 $(\Delta X)_{\rm ZPF}$

High temperature $k_B T \gg \hbar \Omega$: effect of thermal 'black-body' photons Thermal de Broglie wavelength $\lambda_T = \frac{\hbar}{\sqrt{2mk_BT}}$ $\frac{1}{t_{dec}} = \left(\frac{\Delta x}{\lambda_T}\right)^2 \gamma(T) = \frac{k_B T}{\hbar\Omega} \left(\frac{\Delta x}{(\Delta X)_{\text{TDE}}}\right)^2 \gamma(T)$

Physical origin of the thermal drag force: Doppler effect

Take uniform velocity v

Using 3D density of modes and thermal photon number...

We consider large spheres: semiclassical Mie scattering regime of black-body photons

$$R \gg \lambda_{T(\text{ph})} = \frac{\hbar c}{k_B T} \approx 7.6 \,\mu\text{m} \quad @ T = 300 \,\text{K}$$
$$\frac{1}{t_{\text{dec}}} = \frac{8\pi^3}{45} \frac{c \,R^2 (\Delta x)^2}{\left(\lambda_{T(\text{ph})}\right)^5} \implies t_{\text{dec}} = 0.15 \,\mu\text{s} \quad @ R = 10 \,\mu\text{m}, \Delta x = 1 \,\text{nm}$$
$$t_{\text{dec}} = 36 \,\mu\text{s} \quad @ T = 100 \,\text{K}$$

Part B) Dynamical Casimir effects with atoms

Geometric and non-local Casimir atomic phasesQuantum Sagnac Effect

Conclusion

Geometric and non-local Casimir atomic phases

introduction: atom interferometers

THE EUROPEAN PHYSICAL JOURNA

Atom interferometry measurement of the atom-surface van der Waals interaction

- S. Lepoutre¹, V.P.A. Lonij², H. Jelassi^{1,3}, G. Trénec¹, M. Büchner¹, A.D. Cronin², and J. Vigué^{1,a}
- ¹ Laboratoire Collisions Agrégats Réactivité IRSAMC, Université de Toulouse-UPS and CNRS UMR 5589, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
- ² Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
- ³ Centre National des Sciences et Technologies Nucléaires, CNSTN, Pôle Technologique, 2020 Sidi Thabet, Tunisia

Fig. 2: (Colour on-line) Atom interference fringes recorded with (A) both arms (visibility $\mathcal{V}_A = 32\%$), (B) one arm ($\mathcal{V}_B = 34\%$), or (C) neither arm ($V_C = 72\%$) passing through the nanostructure, with a lithium beam velocity $v = 1062 \pm 20$ m/s. The counting period is 0.1s per data point.

introduction: atom interferometers

non-local Casimir phase

atom-surface van der Waals interaction: fluctuating dipole interacts with its **own field**, after reflection by surface

interferometer: self-interaction also with a different wave-packet component

F Impens, R Behunin, C Ccapa-Ttira and PAMN, EPL 2013

F Impens, C Ccapa-Ttira, R Behunin and PAMN, Phys Rev A 2014

Full quantum theory of Casimir interferometers

Atomic center-of-mass as an **open quantum system :** coupling with electromagnetic field and atomic dipole

Hamiltonian in the electric dipole approx.

 $\hat{H}_{AF} = -\hat{\mathbf{d}} \cdot \hat{\mathbf{E}}(\hat{\mathbf{r}}_{a})$

Casimir disturbance of the environment by the system

Interaction Hamiltonian:
$$\hat{\tilde{H}}_{AF}(\mathbf{r}_k(t),t) = -\hat{\mathbf{d}}(t) \cdot \hat{\mathbf{E}}(\mathbf{r}_k(t),t)$$

Effect of the environment

Influence functional:
$$e^{i\Phi_{12}} = \langle \psi_{\mathrm{DF}}^{(2)}(T) | \psi_{\mathrm{DF}}^{(1)}(T) \rangle$$

 $e^{i\Phi_{12}} = \langle \Psi_{DF}(0) | \widetilde{\mathcal{T}} e^{\frac{i}{\hbar} \int_0^T dt \hat{\widetilde{H}}_{AF}(r_2(t))} \mathcal{T} e^{-\frac{i}{\hbar} \int_0^T dt \hat{\widetilde{H}}_{AF}(r_1(t))} | \Psi_{DF}(0) \rangle$

Imaginary part of Φ_{12} : decoherence

Real part of Φ_{12} : local and **non-local** interferometric phases

Second-order term obtained from first-order along each path

NON-LOCAL DOUBLE-PATH DIAGRAM!

Casimir Interactions: Diagrammatic Picture

Influence of the environment:

Casimir Interactions: Diagrammatic Picture

Non-local double path atomic phase:

$$\phi_{12}^{\rm DP} = \frac{1}{4} \iint_{0}^{T} dt' dt \left[g_{\hat{d}}^{H}(t,t') \left(\mathcal{G}_{\hat{E}}^{R,S}(r_{1}(t),r_{2}(t')) - \mathcal{G}_{\hat{E}}^{R,S}(r_{2}(t),r_{1}(t')) \right) \right] \\ + g_{\hat{d}}^{R}(t,t') \left(\mathcal{G}_{\hat{E}}^{H,S}(r_{1}(t),r_{2}(t')) - \mathcal{G}_{\hat{E}}^{H,S}(r_{2}(t),r_{1}(t')) \right) \right] \\ Path 2 Path 1 Path 1 Path 1$$

Fluctuations:

$$G^{H}_{\hat{\mathbf{O}},\ ij}(x;x') = \frac{1}{\hbar} \langle \{ \hat{O}^{f}_{i}(x), \hat{O}^{f}_{j}(x') \} \rangle$$

Linear response susceptibilities: $G^{R}_{\hat{\mathbf{O}}, ij}(t, t') = \frac{i}{\hbar} \theta(t - t') \langle [\hat{O}^{f}_{i}(t), \hat{O}^{f}_{j}(t')] \rangle$

Dynamical Casimir-like non-local atomic phase

Atom Interferometer:

One arm parallel to the plate Other arm going away from the plate

«Cross-talks» between the two paths Asymmetry avoids cancellation!

Non-local double-path Casimir atomic phase

Double-path phase:

$$\phi_{12}^{\mathrm{DP}} = rac{3\pi}{4\lambda_0} \left(rac{lpha(0)}{4\pi\epsilon_0}
ight) rac{1}{z_0^2}$$

For narrow wave-packets and in the saturation regime where

$$z_0 \downarrow v_\perp T$$

 $z_0 \ll v_\perp T \ll \lambda_0$

87Rb atom:

 $\alpha_{\rm Rb}(0)/(4\pi\epsilon_0) = 4.72 \times 10^{-29} {
m m}^3$ Atomic polarizability

$$5s_{1/2} - 5p_{1/2}$$
 and $5s_{1/2} - 5p_{3/2}$ transitions

Distance of the wave-packet center to the plate: $z_0 = 20 \text{ nm}$

Narrow atomic packets: $\phi_{12}^{narrow,DP} = 3 \times 10^{-7}$ radWide atomic packets: $\phi_{12}^{wide,DP} = 3 \times 10^{-6}$ rad

Quantum Sagnac effect

GHz rotation of optically trapped nanoparticles

 nature nanotechnology
 LETTERS

 Ultrasensitive torque detection with an optically levitated nanorotor

Jonghoon Ahn¹, Zhujing Xu², Jaehoon Bang¹, Peng Ju², Xingyu Gao² and Tongcang Li^{©1,2,3,4*}

vacuum. Our system does not require complex nanofabrication. Moreover, we drive a nanoparticle to rotate at a record high speed beyond 5 GHz (300 billion r.p.m.). Our calculations

Featured in Physics

GHz Rotation of an Optically Trapped Nanoparticle in Vacuum

René Reimann, Michael Doderer, Erik Hebestreit, Rozenn Diehl, Martin Frimmer, Dominik Windey, Felix Tebbenjohanns, and Lukas Novotny Phys. Rev. Lett. **121**, 033602 – Published 20 July 2018; Erratum Phys. Rev. Lett. **126**, 159901 (2021)

PhySICS See Focus story: The Fastest Spinners

Opportunity to probe dynamical Casimir effects....?

interferometer

Sagnac effect in an inertial frame?

Inertial frame and rotating conductor

Quantum Sagnac phase near a spinning particle Casimir phase:

 $|e\rangle$

 $\Delta\phi_{12} = \varphi_{11} - \varphi_{22} + \varphi_{12} - \varphi_{21}$

Spinning nano-particle

$$\varphi_{kl} = \frac{1}{4} \iint_{-\frac{T}{2}}^{\frac{T}{2}} dt \, dt' \left[g_{\hat{\mathbf{d}}}^{H}(t,t') \mathcal{G}_{\hat{\mathbf{E}}}^{R,S}(\mathbf{r}_{k}(t),t;\mathbf{r}_{l}(t'),t') + (R \leftrightarrow H) \right]$$

Quantum Sagnac phase

Real part of the spherical particle $\tilde{\alpha}_{S,R}(\omega) = \operatorname{Re}[\alpha_S(\omega)]$ polarizability

 α_0^A = static atomic polarizability

G. C. Matos, Reinaldo de Melo e Souza, PAMN, and F Impens, Phys. Rev. Lett. **127**, 270401 (2021).

68

Estimation of the Quantum Sagnac phase in an atom-Interferometer

Atomic wave-packets of finite width

Total phase = quasi-static van der Waals + quantum Sagnac phase

$$\phi(\Omega, x, z, v) = \phi^{\mathrm{vdW}}(x, z, v) + \phi^{\Omega}(x, z)$$

Accessible quantum Sagnac phase

$$\overline{\phi}^{\Omega}(\Omega, v) \equiv \overline{\phi}(\Omega, v) - \overline{\phi}(0, v)$$

averaging over wave-packet width (as in Alexander D. Cronin and John D. Perreault, Phys. Rev. A 70, 043607 (2004))

 $\Omega = 2\pi \times 5 \, \mathrm{GHz}$

Nanosphere radius a = 30 - 50 nm

 $\begin{array}{ll} \mbox{Atomic beam of} & w = 10 - 100 \ {\rm nm} \\ \mbox{width} \\ \mbox{Atomic} & v = 1 - 5 \ {\rm km/s} \\ \mbox{velocities} \end{array}$

69

Na atoms

$$\overline{\phi}^{\Omega}(\Omega, v) \simeq 0.1 \,\mathrm{mrad}$$

Conclusion:

Influence of the environment of the system of interest: decoherence, phase shift in an atom interferometer

Dynamical Casimir effects: emission of photons, non-unitary non-local phase in an atom interferometer; quantum Sagnac phase

Methods: master equation/Fokker-Planck equation; influence functional

Funding:

 FAPERJ/ Embassy of France in Brasil - mobilité internationale
 FAPERJ: CNE, Sediadas, Temáticos
 INCT/FAPESP - Complex Fluids
 CNPq, CAPES
 KITP - UCSB

