Quantum decoherence, Casimir effect, quantum vacuum fluctuations

Paulo A. Maia Neto
Instituto de Física, UFRJ, Rio de Janeiro, Brazil

École Doctorale QMat 182 - U. Strasbourg

December 2023

Quantum decoherence, Casimir effect, quantum vacuum fluctuations

11/12/2023
Lecture 1: Decoherence of massive particles by radiation pressure: introduction
$20 / 12 / 2023$
Lecture 2
Part A (cont of Lecture 1):

Casimir effect, decoherence via master equation
Part B:
Dynamical Casimir effects with atoms
École Doctorale QMat 182 - U. Strasbourg
December 2023

Decoherence by radiation pressure: master equation, results at zero and finite temperatures

decoherence by radiation pressure

Master equation for the particle center of mass:

- radiation pressure coupling: quadratic in the electromagnetic field operators

O external harmonic potential (optical tweezer): frequency Ω
master equation for reduced density operator of the bead CM
Similar to quantum Brownian motion models -
Caldeira \& Leggett (1985), Unruh \& Zurek (1989), Hu, Paz \& Zhang (1992)
Thermal field radiation pressure coupling: Joos \& Zeh (1985)

DAR Dalvit and PAMN, Phys. Rev. Lett. 84799 (2000); Phys. Rev. A62, 042103 (2000)

decoherence by radiation pressure

Master equation for the particle center of mass: equivalent to Fokker-Planck equation for the Wigner function $W(x, p, t)$

DAR Dalvit and PAMN, Phys. Rev. Lett. 84799 (2000); Phys. Rev. A62, 042103 (2000)

decoherence by radiation pressure

Ω

Master equation for the particle center of mass: equivalent to Fokker-Planck equation for the Wigner function $W(x, p, t)$

$\partial_{t} W=-\frac{p}{m} \partial_{x} W+m \Omega^{2} x \partial_{p} W+\gamma \partial_{p}(p W)+D \frac{\partial^{2} W}{\partial p^{2}}$

decoherence by radiation pressure

Master equation for the particle center of mass: equivalent to Fokker-Planck equation for the Wigner function $W(x, p, t)$

$\partial_{t} W=-\frac{p}{m} \partial_{x} W+m \Omega^{2} x \partial_{p} W+\gamma \partial_{p}(p W)+D \frac{\partial^{2} W}{\partial p^{2}}$

decoherence by radiation pressure

Master equation for the particle center of mass: equivalent to Fokker-Planck equation for the Wigner function $W(x, p, t)$

$$
\partial_{t} W=-\frac{p}{m} \partial_{x} W+m \Omega^{2} x \partial_{p} W+\gamma \partial_{p}(p W)+D \frac{\partial^{2} W}{\partial p^{2}}
$$

Initial state: $\begin{aligned} & \text { Initial state: } \\ & \begin{array}{l}\text { superposition of } \\ \text { coherent states }\end{array}\end{aligned}|\psi\rangle_{0}=\frac{1}{\sqrt{2}}\left(\left|\alpha_{0}\right\rangle+\left|-\alpha_{0}\right\rangle\right)$

decoherence by radiation pressure

Decoherence from diffusion in phase space

$$
\partial_{t} W=-\frac{p}{m} \partial_{x} W+m \Omega^{2} x \partial_{p} W+\gamma \partial_{p}(p W)+D \frac{\partial^{2} W}{\partial p^{2}}
$$

$$
\begin{aligned}
& \frac{W_{\mathrm{int}}(x, p, t) \sim \cos (\Delta x p / t}{t_{\mathrm{dec}} \text { is the decoherence ti }} \\
& \frac{1}{t_{\mathrm{dec}}}=D\left(\frac{\Delta x}{\hbar}\right)^{2}
\end{aligned}
$$

The less classical the state is, the faster is decoherence

decoherence by radiation pressure

Damping and diffusion coefficients

Weak coupoling to the environment
Long times $t \gg 2 \pi / \Omega$: damping and diffusion coefficients become constant

Anti-symmetric correlation function

$$
\begin{aligned}
& \xi(t) \equiv\langle[F(t), F(0)]\rangle \longleftrightarrow \gamma \approx \frac{1}{4 m \hbar \Omega} \tilde{\xi}(\Omega) \\
& \sigma(t) \equiv\langle\{F(t), F(0)\}\rangle \Longleftrightarrow D \approx \frac{1}{4} \tilde{\sigma}(\Omega)
\end{aligned}
$$

Symmetric correlation function

Fluctuation-dissipation theorem when
environment is at thermal equilibrium, temperature T

$$
\tilde{\sigma}(\Omega)=\operatorname{coth}\left(\frac{\hbar \Omega}{2 k_{B} T}\right) \tilde{\xi}(\Omega)
$$

High temperature

$$
k_{B} T \gg \hbar \Omega
$$

$$
D=2 k_{B} T m \gamma(T)
$$

Low temperature

$$
k_{B} T \ll \hbar \Omega
$$

$$
D=\hbar \Omega m \gamma(T=0)
$$

DAR Dalvit and PAMN, Phys. Rev. Lett. 84799 (2000); Phys. Rev. A62, 042103 (2000)

decoherence by radiation pressure

Decoherence time $t_{\text {dec }}$

$$
\frac{1}{t_{\mathrm{dec}}}=D\left(\frac{\Delta x}{\hbar}\right)^{2}
$$

Low temperature $k_{B} T \ll \hbar \Omega$
Position uncertainty of ground state $(\Delta X)_{\mathrm{ZPF}}$:

$$
(\Delta X)_{\mathrm{ZPF}}=\sqrt{\frac{\hbar}{2 m \Omega}} \quad \frac{1}{t_{\mathrm{dec}}}=\left(\frac{\Delta x}{(\Delta X)_{\mathrm{ZPF}}}\right)^{2} \gamma(T=0)
$$

High temperature $k_{B} T \gg \hbar \Omega$: effect of thermal 'black-body' photons
Thermal de Broglie wavelength $\lambda_{T}=\frac{\hbar}{\sqrt{2 m k_{B} T}}$

$$
\frac{1}{t_{\mathrm{dec}}}=\left(\frac{\Delta x}{\lambda_{T}}\right)^{2} \gamma(T)=\frac{k_{B} T}{\hbar \Omega}\left(\frac{\Delta x}{(\Delta X)_{\mathrm{ZPF}}}\right)^{2} \gamma(T)
$$

Physical origin of the thermal drag force: Doppler effect

Take uniform velocity v

Unbalanced momentum exchange per photon:

$$
\Delta P=\frac{\hbar}{c} 2 \omega \frac{v}{c}
$$

Recoil force

$$
\Rightarrow F=-\frac{\Delta P}{\Delta t}=-2 \frac{\Delta E}{\Delta t} \frac{v}{c^{2}}
$$

Using 3D density of modes and thermal photon number...

$$
F_{T}=-\frac{2 \pi^{2}}{15} A \frac{\left(k_{B} T\right)^{4}}{\hbar^{3} c^{4}} v
$$

decoherence by radiation pressure

High temperature $k_{B} T \gg \hbar \Omega$
Ω

We consider large spheres: semiclassical Mie scattering regime of black-body photons

$$
R \gg \lambda_{T(\mathrm{ph})}=\frac{\hbar c}{k_{B} T} \approx 7.6 \mu \mathrm{~m} @ T=300 \mathrm{~K}
$$

$$
\begin{aligned}
\frac{1}{t_{\mathrm{dec}}}=\frac{8 \pi^{3}}{45} \frac{c R^{2}(\Delta x)^{2}}{\left(\lambda_{T(\mathrm{ph})}\right)^{5}} \Longrightarrow t_{\mathrm{dec}}=0.15 \mu \mathrm{~s} @ R=10 \mu \mathrm{~m}, \Delta x=1 \mathrm{~nm} \\
t_{\mathrm{dec}}=36 \mu \mathrm{~s} @ T=100 \mathrm{~K}
\end{aligned}
$$

Part B) Dynamical Casimir effects with atoms

- Geometric and non-local Casimir atomic phases
-Quantum Sagnac Effect

Conclusion

Geometric and non-local Casimir atomic phases

introduction: atom interferometers

Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions

John D. Perreault and Alexander D. Cronin

University of Arizona, Tucson, Arizona 85721, USA

Atom-Surface interaction in the nano grating

FIG. 3. Interference pattern observed when the grating G_{4} is inserted into path α or β of the atom interferometer. Each interference pattern represents 5 s of data. The intensity error bars are arrived at by assuming Poisson statistics for the number of detected atoms. The dashed line in the plots is a visual aid to help illustrate the measured phase shift of 0.3 rad . Notice how the phase shift induced by placing G_{4} in path α or β has opposite sign. The sign of the phase shift is also consistent with the atom experiencing an attractive potential as it passes through G_{4}.

introduction: atom interferometers

Bragg atom interferometer

John D. Perreault and Alexander D. Cronin, PRL 95, 133201 (2005)
S. Lepoutre, H. Jelassi, V.P.A. Lonig,
G. Trénec, M. Büchner, A. D. Cronin, and J. Vigué, EPL 88, 20002 (2009)
S. Lepoutre et al. , EPJD 62, 309 (2011)

Eur. Phys. J. D 62, 309-325 (2011)
DOI: $10.1140 / \mathrm{epjd} / \mathrm{e} 2011-10584-7$
Regular Article

Atom interferometry measurement of the atom-surface van der Waals interaction
S. Lepoutre ${ }^{1}$, V.P.A. Lonij ${ }^{2}$, H. Jelassi ${ }^{1,3}$, G. Trénec ${ }^{1}$, M. Büchner ${ }^{1}$, A.D. Cronin ${ }^{2}$, and J. Vigué ${ }^{1, a}$
${ }^{1}$ Laboratoire Collisions Agrégats Réactivité IRSAMC, Université de Toulouse-UPS and CNRS UMR 5589, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
${ }^{2}$ Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
${ }^{3}$ Centre National des Sciences et Technologies Nucléaires, CNSTN, Pôle Technologique, 2020 Sidi Thabet, Tunisia

Fig. 2: (Colour on-line) Atom interference fringes recorded with (A) both arms (visibility $\left.\mathcal{V}_{A}=32 \%\right)$, (B) one arm ($\mathcal{V}_{B}=34 \%$), or (C) neither arm ($\mathcal{V}_{\mathcal{C}}=72 \%$) passing through the nanostructure, with a lithium beam velocity $v=1062 \pm 20 \mathrm{~m} / \mathrm{s}$. The counting period is 0.1 s per data point.

Casimir Atom Interferometry: Local theory

STANDARD APPROACH: $\quad \phi_{k}^{\mathrm{Cas}}=-\frac{1}{\hbar} \int_{0}^{T} d t V_{\mathrm{Cas}}\left(\mathbf{r}_{k}(t)\right)$

LIMITATIONS:
Quasi-static
Ignores environment

Well defined phase for each path!!

non-local Casimir phase

atom-surface van der Waals interaction:
fluctuating dipole interacts with its own field, after reflection by surface

interferometer: self-interaction also with a different wave-packet component

F Impens, R Behunin, C Ccapa-Ttira and PAMN, EPL 2013
F Impens, C Ccapa-Ttira, R Behunin and PAMN, Phys Rev A 2014

Atom interferometers as open quantum systems

Full quantum theory of Casimir interferometers

Atomic center-of-mass as an open quantum system : coupling with electromagnetic field and atomic dipole

Hamiltonian in the electric dipole approx.

$$
\hat{H}_{\mathrm{AF}}=-\hat{\mathbf{d}} \cdot \hat{\mathbf{E}}\left(\hat{\mathbf{r}}_{a}\right)
$$

Casimir disturbance of the environment by the system

SURFACE
Initial state: $|\psi(0)\rangle=\frac{1}{\sqrt{2}}(\underbrace{\left.\left|\psi_{E}^{1}(0)\right\rangle+\left|\psi_{E}^{2}(0)\right\rangle\right)}_{\text {external/CM }} \otimes \underbrace{\mid \Psi_{D F}(0)}_{\text {internal dipole + field }}\rangle$
Interaction Hamiltonian: $\quad \hat{H}_{\mathrm{AF}}=-\hat{\mathbf{d}} \cdot \hat{\mathbf{E}}\left(\hat{\mathbf{r}}_{a}\right)$
Final entangled state: $\quad|\psi(T)\rangle=\frac{1}{\sqrt{2}}\left|\psi_{E}^{1}(T)\right\rangle \otimes\left|\Psi_{D F}^{1}(T)\right\rangle+\frac{1}{\sqrt{2}}\left|\psi_{E}^{2}(T)\right\rangle \otimes\left|\Psi_{D F}^{2}(T)\right\rangle$

$$
\left|\Psi_{D F}^{k}(T)\right\rangle=\mathcal{T} e^{-\frac{i}{\hbar} \int_{0}^{T} d t \hat{\tilde{H}}_{A F}\left(r_{k}(t)\right)}\left|\Psi_{D F}(0)\right\rangle
$$

Coherence: $\quad \rho_{12}\left(\mathbf{r}, \mathbf{r}^{\prime} ; T\right)=\frac{1}{2}\langle\mathbf{r}| \psi_{E}^{1}(T\rangle\left\langle\Psi_{D F}^{2} \stackrel{1}{(T)\left|\Psi_{D F}^{1}(T)\right\rangle}\right\rangle\left\langle\psi_{E}^{2}(T) \mid \mathbf{r}^{\prime}\right\rangle$ Influence of the Environment!

$$
\searrow \equiv e^{i \Phi_{12}}
$$

Atom interferometers as open quantum systems

Interaction Hamiltonian: $\hat{\tilde{H}}_{A F}\left(\mathbf{r}_{k}(t), t\right)=-\hat{\mathbf{d}}(t) \cdot \hat{\mathbf{E}}\left(\mathbf{r}_{k}(t), t\right)$
Effect of the environment

$$
e^{i \Phi_{12}}=\left\langle\Psi_{D F}(0)\right| \widetilde{\mathcal{T}} e^{\frac{i}{\hbar} \int_{0}^{T} d t \hat{\tilde{H}}_{A F}\left(r_{2}(t)\right)} \mathcal{T} e^{-\frac{i}{\hbar} \int_{0}^{T} d t \hat{\tilde{H}}_{A F}\left(r_{1}(t)\right)}\left|\Psi_{D F}(0)\right\rangle
$$

Imaginary part of Φ_{12} : decoherence
Real part of Φ_{12} : local and non-local interferometric phases

Atom interferometers as open quantum systems

Second-order term obtained from first-order along each path

NON-LOCAL DOUBLE-PATH DIAGRAM!

Casimir Interactions: Diagrammatic Picture

Influence of the environment:

Path 2

Path 1

PERFECTLY REFLECTING SURFACE

Casimir Interactions: Diagrammatic Picture

Non-local double path atomic phase:

$$
\begin{array}{r}
\phi_{12}^{\mathrm{DP}}=\frac{1}{4} \iint_{0}^{T} d t^{\prime} d t\left[g_{\hat{d}}^{H}\left(t, t^{\prime}\right)\left(\mathcal{G}_{\hat{\mathbf{E}}}^{R, S}\left(r_{1}(t), r_{2}\left(t^{\prime}\right)\right)-\mathcal{G}_{\hat{\mathbf{E}}}^{R, S}\left(r_{2}(t), r_{1}\left(t^{\prime}\right)\right)\right)\right. \\
\left.+g_{\hat{d}}^{R}\left(t, t^{\prime}\right)\left(\mathcal{G}_{\hat{\mathbf{E}}}^{H, S}\left(r_{1}(t), r_{2}\left(t^{\prime}\right)\right)-\mathcal{G}_{\hat{\mathbf{E}}}^{H, S}\left(r_{2}(t), r_{1}\left(t^{\prime}\right)\right)\right)\right]
\end{array}
$$

Fluctuations:
$G_{\hat{\mathbf{O}}, i j}^{H}\left(x ; x^{\prime}\right)=\frac{1}{\hbar}\left\langle\left\{\hat{O}_{i}^{f}(x), \hat{O}_{j}^{f}\left(x^{\prime}\right)\right\}\right\rangle$

Linear response susceptibilities:

$$
G_{\hat{\mathbf{O}}, i j}^{R}\left(t, t^{\prime}\right)=\frac{i}{\hbar} \theta\left(t-t^{\prime}\right)\left\langle\left[\hat{O}_{i}^{f}(t), \hat{O}_{j}^{f}\left(t^{\prime}\right)\right]\right\rangle
$$

Dynamical Casimir-like non-local atomic phase

Atom Interferometer:
One arm parallel to the plate
Other arm going away from the plate

«Cross-talks» between the two paths
Asymmetry avoids cancellation!

Non-local double-path Casimir atomic phase

Double-path phase:

$$
\phi_{12}^{\mathrm{DP}}=\frac{3 \pi}{4 \lambda_{0}}\left(\frac{\alpha(0)}{4 \pi \epsilon_{0}}\right) \frac{1}{z_{0}^{2}}
$$

For narrow wave-packets and in the saturation regime where
$z_{0} \ll v_{\perp} T \ll \lambda_{0}$ 87 Rb atom:
$\alpha_{\mathrm{Rb}}(0) /\left(4 \pi \epsilon_{0}\right)=4.72 \times 10^{-29} \mathrm{~m}^{3} \quad$ Atomic polarizability
$5 s_{1 / 2}-5 p_{1 / 2}$ and $5 s_{1 / 2}-5 p_{3 / 2}$ transitions
Distance of the wave-packet center to the plate: $\quad z_{0}=20 \mathrm{~nm}$
Narrow atomic packets: $\quad \phi_{12}^{\text {narrow, }} \mathrm{DP}=3 \times 10^{-7} \mathrm{rad}$
Wide atomic packets:
$\phi_{12}^{\text {wide, } \mathrm{DP}}=3 \times 10^{-6} \mathrm{rad}$

Quantum Sagnac effect

GHz rotation of optically trapped nanoparticles

nature
nanotechnology

Ultrasensitive torque detection with an optically levitated nanorotor

Jonghoon Ahn', Zhujing Xu², Jaehoon Bang ${ }^{1}$, Peng Ju ${ }^{2}$, Xingyu Gao ${ }^{2}$ and Tongcang Lie ${ }^{1,2,3,4 *}$
vacuum. Our system does not require complex nanofabrication. Moreover, we drive a nanoparticle to rotate at a record high speed beyond 5 GHz ($\mathbf{3 0 0}$ billion r.p.m.). Our calculations

Featured in Physics

GHz Rotation of an Optically Trapped Nanoparticle in Vacuum
René Reimann, Michael Doderer, Erik Hebestreit, Rozenn Diehl, Martin Frimmer, Dominik Windey, Felix Tebbenjohanns, and Lukas Novotny
Phys. Rev. Lett. 121, 033602 - Published 20 July 2018; Erratum Phys. Rev. Lett. 126, 159901 (2021)
Physić see Focus story: The Fastest Spinners
Opportunity to probe dynamical Casimir effects....?

Sagnac Atom Interferometer

Ex: embarked atom interferometer

Sagnac effect in an inertial frame?

Inertial frame and rotating conductor

Quantum Sagnac phase near a spinning

 particle

Casimir phase:

$$
\Delta \phi_{12}=\varphi_{11}-\varphi_{22}+\varphi_{12}-\varphi_{21}
$$

Spinning

$$
\varphi_{k l}=\frac{1}{4} \iint_{-\frac{T}{2}}^{\frac{T}{2}} d t d t^{\prime}\left[g_{\hat{\mathbf{d}}}^{H}\left(t, t^{\prime}\right) \mathcal{G}_{\mathbf{E}}^{R, S}\left(\mathbf{r}_{k}(t), t ; \mathbf{r}_{l}\left(t^{\prime}\right), t^{\prime}\right)+(R \leftrightarrow H)\right]
$$ nano-particle

Quantum Sagnac phase

Local Quantum Sagnac phase (in the non-retarded approximation)

$$
\phi_{\mathrm{vdW}, \mathrm{k}}^{\Omega}=\frac{9}{2} \frac{\omega_{0} \alpha_{0}^{\mathrm{A}} \tilde{\alpha}_{S, R}^{\prime \prime}\left(\omega_{0}\right)}{\left(4 \pi \epsilon_{0}\right)^{2}} \int_{\mathcal{P}_{k}} d \mathbf{r} \cdot \frac{\boldsymbol{\Omega} \times \mathbf{r}}{r^{8}}
$$

Real part of the spherical particle

$$
\tilde{\alpha}_{S, R}(\omega)=\operatorname{Re}\left[\alpha_{S}(\omega)\right]
$$ polarizability

$$
\alpha_{0}^{A}=\text { static atomic polarizability }
$$

G. C. Matos, Reinaldo de Melo e Souza, PAMN, and F Impens, Phys. Rev. Lett. 127, 270401 (2021).

Estimation of the Quantum Sagnac phase in an atom-Interferometer

Atomic wave-packets of finite width
Total phase = quasi-static van der Waals + quantum Sagnac phase
$\phi(\Omega, x, z, v)=\phi^{\mathrm{vdW}}(x, z, v)+\phi^{\Omega}(x, z)$
Accessible quantum Sagnac phase

$$
\bar{\phi}^{\Omega}(\Omega, v) \equiv \bar{\phi}(\Omega, v)-\bar{\phi}(0, v)
$$

averaging over wave-packet width (as in Alexander D. Cronin and John D. Perreault, Phys. Rev. A 70, 043607 (2004))
$\Omega=2 \pi \times 5 \mathrm{GHz}$

Nanosphere radius $a=30-50 \mathrm{~nm}$
Atomic beam of width Atomic velocities

$$
\begin{aligned}
w & =10-100 \mathrm{~nm} \\
v & =1-5 \mathrm{~km} / \mathrm{s}
\end{aligned}
$$

Na atoms

Conclusion:

- Influence of the enviroment of the system of interest: decoherence, phase shift in an atom interferometer
- Dynamical Casimir effects: emission of photons, non-unitary non-local phase in an atom interferometer; quantum Sagnac phase
© Methods: master equation/Fokker-Planck equation; influence functional

Funding:

- FAPERJ/ Embassy of France in Brasil - mobilité internationale
- FAPERJ: CNE, Sediadas,

Temáticos
© INCT/FAPESP - Complex Fluids
© CNPq, CAPES
© KITP - UCSB

Thank you!

