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Decoherence by radiation 
pressure: master equation, 
results at zero and finite 

temperatures 
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Master equation for the particle center of mass:   

radiation pressure coupling: quadratic in the electromagnetic field 
operators 

external harmonic potential (optical tweezer): frequency Ω

decoherence from radiation pressure

DAR Dalvit and PAMN, Phys. Rev. Lett. 84 799 (2000); Phys. Rev. A62, 042103 (2000)  
 

master equation for reduced density operator of the bead CM
Similar to quantum Brownian motion models -  
Caldeira & Leggett (1985), Unruh & Zurek (1989), Hu, Paz & Zhang (1992) 
Thermal field radiation pressure coupling: Joos & Zeh (1985)

∂t ̂ρ(t) = − i
ℏ [Ĥ0, ̂ρ(t)] − i

ℏ γ(t) [ ̂x, { ̂p, ̂ρ(t)}] − 1
ℏ2 D(t) [ ̂x, [ ̂x, ̂ρ(t)]]

diffusion {{damping

[environment = quantum electromagnetic field] 
unitary evolution

Ω
decoherence by radiation pressure



Master equation for the particle center of mass:  
equivalent to Fokker-Planck equation for the Wigner 
function  W(x, p, t)

DAR Dalvit and PAMN, Phys. Rev. Lett. 84 799 (2000); Phys. Rev. A62, 042103 (2000)  
 

∂tW = − p
m

∂xW + mΩ2x∂pW + γ∂p(pW ) + D
∂2W
∂p2

W(x, p, t) ≡ 1
2πℏ ∫

∞

−∞
dy eipy/ℏ ⟨x − y/2 | ̂ρ |x + y/2⟩

{ {

diffusion damping

Ω

Unitary rotation 
in phase space

|ψ⟩0 = 1
2

( |α0⟩ + | − α0⟩)
Ω

|ψ⟩t = 1
2

( |α(t)⟩ + | − α(t)⟩)

α(t) = α0 e−iΩt

decoherence by radiation pressure



Master equation for the particle center of mass:  
equivalent to Fokker-Planck equation for the Wigner 
function  W(x, p, t)

∂tW = − p
m

∂xW + mΩ2x∂pW + γ∂p(pW ) + D
∂2W
∂p2

damping

0 p0p

decoherence from radiation pressure
Ω

decoherence by radiation pressure



Master equation for the particle center of mass:  
equivalent to Fokker-Planck equation for the Wigner 
function  W(x, p, t)

∂tW = − p
m

∂xW + mΩ2x∂pW + γ∂p(pW ) + D
∂2W
∂p2

diffusion

0 p p0

Ω
decoherence by radiation pressure



Master equation for the particle center of mass:  
equivalent to Fokker-Planck equation for the Wigner 
function  W(x, p, t)

∂tW = − p
m

∂xW + mΩ2x∂pW + γ∂p(pW ) + D
∂2W
∂p2

diffusion

0 p p0

Initial state: 
superposition of 
coherent states

|ψ⟩0 = 1
2

( |α0⟩ + | − α0⟩)

p
loss of contrast/
frange visibility

momentum prob density = ∫
∞

−∞
d x W(x, p)

decoherence by radiation pressure



Decoherence from diffusion in phase space 

∂tW = − p
m

∂xW + mΩ2x∂pW + γ∂p(pW ) + D
∂2W
∂p2

Wint(x, p, t) ∼ cos(Δx p/ℏ) exp(−t/tdec)
p

x

Δx

 is the decoherence time  tdec

1
tdec

= D ( Δx
ℏ )

2

The less classical the state is, the faster is decoherence

decoherence by radiation pressure



Dynamical Casimir diffusion

DAR Dalvit and PAMN, Phys. Rev. Lett. 84 799 (2000); Phys. Rev. A62, 042103 (2000)  
 

Anti-symmetric 
correlation function

Symmetric 
correlation function σ(t) ≡ ⟨{F(t), F(0)}⟩

Fluctuation-dissipation 
theorem when 

environment is at thermal 
equilibrium, temperature T

σ̃(Ω) = coth( ℏΩ
2kBT ) ξ̃(Ω)

Weak coupoling to the environment 

Long times : damping and 
diffusion coefficients become constant

t ≫ 2π /Ω

γ ≈ 1
4mℏΩ ξ̃(Ω)

D ≈ 1
4 σ̃(Ω)

m
ΩDamping and diffusion coefficients

ξ(t) ≡ ⟨[F(t), F(0)]⟩

Diffusion vs damping:

High temperature 
kBT ≫ ℏΩ D = 2kBT m γ(T )

radiation pressure 
damping depends 
on temperature!

Low temperature 
kBT ≪ ℏΩ D = ℏΩ m γ(T = 0)

{

decoherence by radiation pressure



Decoherence time  tdec

1
tdec

= D ( Δx
ℏ )

2

p

x

Δx

(ΔX )ZPF

(ΔX )ZPF = ℏ
2mΩ

High temperature : effect of thermal ‘black-body’ photonskBT ≫ ℏΩ

Low temperature kBT ≪ ℏΩ

1
tdec

= ( Δx
(ΔX)ZPF )

2
γ(T = 0)

1
tdec

= ( Δx
λT )

2
γ(T ) = kBT

ℏΩ ( Δx
(ΔX )ZPF )

2
γ(T )

Thermal de Broglie wavelength λT = ℏ
2mkBT

Position uncertainty of ground state :(ΔX )ZPF

decoherence by radiation pressure



Physical origin of the thermal drag 
force: Doppler effect

Take uniform velocity v

Using 3D density of modes and 
thermal photon number…

Unbalanced momentum 
exchange per photon: 

Recoil force



High temperature 
kBT ≫ ℏΩ

1
tdec

= 8π3

45
c R2(Δx)2

(λT(ph))
5 ⟹

R ≫ λT(ph) = ℏc
kBT

≈ 7.6 μm

We consider large spheres: semiclassical Mie scattering regime of 
black-body photons

@T = 300 K

tdec = 0.15 μs @R = 10 μm, Δx = 1 nm

Ωp

x

Δx

λT(ph)

2R

decoherence by radiation pressure

tdec = 36 μs @T = 100 K



Part B) Dynamical Casimir effects with atoms  

Geometric and non-local Casimir atomic phases  
Quantum Sagnac Effect 

Conclusion 



Geometric and non-local Casimir 
atomic phases  
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Shift of the 
atomic 
fringes

Atom-Surface 
interaction in the 
nano grating

tion of at least 106 g while passing through the grating.
Therefore, the vdW interaction is one of the most important
forces at the nanometer length scale.

The experiment consists of measuring shifts in the po-
sition of the interference pattern I!x" when G4 is moved in
and out of the interferometer paths. The interference data
are shown in Fig. 3. When G4 is placed in path ! the
fringes shift in the positive x direction, whereas placing G4
in path " causes a shift in the negative x direction.
Therefore the absolute sign of the phase shift is consistent
with an attractive force between the Na atoms and the walls
of grating G4. It is also observed that although the Na
atoms are passing within 25 nm of the grating the atom
waves retain their wavelike behavior (coherence), as evi-
dent by the nonzero contrast of the interference fringes.

The atom interferometer had a linear background phase
drift of approximately 2# rad=h and nonlinear excursions
of #1 rad over a period of 10 min, which were attributed to
thermally induced position drift of the interferometer grat-
ings G1; G2; G3 and phase instability of the vibration com-
pensating laser interferometer. The data were taken by
alternating between test (G4 in path ! or ") and control
(G4 out of the interferometer) conditions with a period of
50 s, so that the background phase drift was nearly linear
between data collection cycles. A fifth order polynomial
was fit to the phase time series for the control cases and
then subtracted from the test and control data. All of the
interference data were corrected in this way.

Grating G4 had to be prepared so that it was possible to
obscure the test arm of the interferometer while leaving the
reference arm unaffected. The grating is surrounded by a
silicon frame, making it necessary to perforate G4. A
scanning electron microscope image of G4 after it has
been perforated can be found in [16]. The grating bars
themselves are stabilized by 1 $m period support bars
running along the direction of kg as described in [13,14].
The grating naturally fractured along these support struc-
tures after applying pressure with a drawn glass capillary
tube. Using this preparation technique, G4 had a transition
from intact grating to gap over a distance of about 3 $m,
easily fitting inside our interferometer, which has a path
separation of about 80 $m for atoms traveling at 2 km=s.

Because of the preparation technique, G4 was inserted
into the test arm with kg orthogonal to the plane of the
interferometer. This causes diffraction of the test arm out
of the plane of the interferometer, in addition to the zeroth
order. However, the diffracted beams have an additional
path length of approximately 2 nm due to geometry. Since
our atom beam source has a coherence length of
!v=%v"&dB $ 0:1 nm, the interference caused by the dif-
fracted beams will have negligible contrast. Therefore, the
zeroth order of G4 will be the only significant contribution
to the interference signal.

In principle, the amount of phase shift !0 induced by the
vdW interaction should depend on how long the atom
spends near the surface of the grating bars. Therefore the
observed phase shift produced by placing G4 in one of the
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FIG. 3. Interference pattern observed when the grating G4 is
inserted into path ! or " of the atom interferometer. Each
interference pattern represents 5 s of data. The intensity error
bars are arrived at by assuming Poisson statistics for the number
of detected atoms. The dashed line in the plots is a visual aid to
help illustrate the measured phase shift of 0.3 rad. Notice how
the phase shift induced by placing G4 in path ! or " has opposite
sign. The sign of the phase shift is also consistent with the atom
experiencing an attractive potential as it passes through G4.
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FIG. 4. Phase shift !0 induced by grating G4 for various atom
beam velocities. The phase shift data have been corrected for
systematic offsets (#30%) caused by the interference of other
diffraction orders and beam overlap in the atom interferometer,
and the error bars reflect the uncertainty in the systematic
parameters. The solid line is a prediction of the induced phase
shift for vdW coefficient C3 $ 3 meV nm3, grating thickness
150 nm, and grating open fraction 0.5. The data agree in
magnitude with the prediction and reproduce the slight trend
of decreasing phase shift with increasing velocity.
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 n ! Anei!n ! ei!o

Z w=2

"w=2
ei"!##$ei2$#n=dd#; (2)

where An and !n are real numbers, and n is the diffraction
order number [8]. For n ! 0 the second exponential in the
integrand is unity, and to leading order in !##$, !0 %
h!##$i is the average phase over the grating window.
Experiments which measure the intensity of atom waves
(e.g., atom wave diffraction) are only sensitive to j nj2 !
jAnj2, which is in part influenced by "!##$. However, it is
clear from Eq. (2) that j nj2 reveals no information about
!o or !n. We have determined A0 and !0 by placing this
array of cavities (grating) in one arm of an atom interfer-
ometer. This new technique is sensitive to the entire phase
shift !##$ induced by an atom-surface interaction, includ-
ing the constant offset !o.

The experimental setup for using an atom interferometer
to measure the phase shift !0 induced by atom-surface
interactions is shown in Fig. 2. The atom interferometer
used is similar to the type described in [13] and described
here briefly. A beam of Na atoms traveling at v ! 2 km=s
(%dB ! 0:08 "A) is generated from an oven, and a position
state of the atom wave is selected by two 10 &m collima-
tion slits spaced 1 m apart. A Mach-Zehnder–type inter-
ferometer is formed using the zeroth and first order
diffracted beams from three 100 nm period silicon nitride
gratings [14]. The three gratings G1; G2; G3 are spaced 1 m
from each other and produce a first order diffraction angle
of about 80 &rad for 2 km=s sodium atoms. The grating
G1 creates a superposition of position states j'i and j(i
which propagate along separated paths ' and (, respec-
tively. The states are then recombined using gratingG2 and

form a spatial interference pattern I#x$, with a 100 nm
period, at the plane of G3. The phase and contrast of the
interference pattern are measured by scanning G3 in the x
direction with a piezoelectric stage and counting the trans-
mitted atoms with a detector. The detector ionizes the
transmitted atoms with a 60 &m diameter hot Re wire,
and then counts the ions with a channel electron multiplier.
A copropagating laser interferometer (not shown in Fig. 2)
was used to monitor the positions of G1; G2; G3 and to
compensate for mechanical vibrations. Since the optical
interference fringe period is # ! 3 &m, relative uncer-
tainty in the optical interferometer output intensity of
$I=I & 2$$x=# ! 1=1000 permits nanometer resolution
in the position of G3.

When grating G4 is inserted into the interferometer path
', the interference pattern I#x$ shifts in space along the
positive x direction. This can be understood by recalling
de Broglie’s relation %dB ! h=p [15]. The atoms are sped
up by the attractive vdW interaction between the Na atoms
and the walls of grating G4. This causes %dB to be smaller
in the region of G4, compressing the atom wave phase
fronts and retarding the phase of beam j'i as it propagates
along path '. One could also say that G4 effectively
increases the optical path length of path '. At G3 the
beams j'i and j(i then have a relative phase between
them leading to the state

j)i ! A0ei!0 j'i' eikgxj(i; (3)

where kg ! 2$=d is the grating wave number and d is the
grating period. The diffraction amplitude A0 reflects the
fact that beam j'i is also attenuated by G4. The state j)i in
Eq. (3) leads to an interference pattern which is shifted in
space by an amount that depends on !0:

I#x$ ! h)j)i / 1' C cos#kgx"!0$; (4)

whereC is the contrast of the interference pattern. Inserting
G4 into path ( will result in the same form of the interfer-
ence pattern in Eq. (4), but with a phase shift of the
opposite sign (i.e., !0 ! "!0).

Grating G4 is an array of cavities 50 nm wide and
150 nm long which cause a potential well for the Na atoms
due to the vdW interaction. Atoms transmitted through G4
must pass within 25 nm of the silicon nitride cavity walls
since the open slots of the grating are 50 nm wide. At this
atom-surface distance the depth of the potential well is
about 4( 10"7 eV. Therefore, as the atoms enter the
grating they are accelerated by the vdW interaction from
2000 m=s to at least 2000:001 m=s (depending on #) and
decelerated back to 2000 m=s as they leave the grating.
This small change in velocity is enough to cause a phase
shift of !0 ! 0:3 rad according to Eqs. (1) and (2), which
corresponds to a 5 nm displacement of the interference
pattern in the far field. It is quite remarkable to note that the
acceleration and deceleration happens over a time period
of 75 ps, implying that the atoms experience an accelera-

atom
beam

G1 G2 G3

G4

x

I(x)
detector

eikgx

A0eiΦ0

eikgx|α>

|β>

|α>

|β>
1 m 1 m

FIG. 2. Experimental setup for vdW induced phase measure-
ment. A Mach-Zhender atom interferometer with paths ' and (
is formed using the zeroth and first order diffracted beams of
gratings G1 and G2 which have a period of 100 nm. The atom
wave interference pattern I#x$ is read out using grating G3 as an
amplitude mask. The phase fronts (groups of parallel lines)
passing through grating G4 are compressed due to the attractive
vdW interaction, resulting in a phase shift !0 of beam j'i
relative to j(i. This causes the interference pattern I#x$ to shift
in space at the plane defined by G3.
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Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions

John D. Perreault and Alexander D. Cronin
University of Arizona, Tucson, Arizona 85721, USA

(Received 29 March 2005; published 19 September 2005)

The development of nanotechnology and atom optics relies on understanding how atoms behave and
interact with their environment. Isolated atoms can exhibit wavelike (coherent) behavior with a
corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an
atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm
wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift
caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted
by Lifshitz theory for a nonretarded van der Waals interaction. This experiment also demonstrates that
atom waves can retain their coherence even when atom-surface distances are as small as 10 nm.

DOI: 10.1103/PhysRevLett.95.133201 PACS numbers: 34.50.Dy, 03.75.Dg, 34.20.Cf, 42.30.Kq

The generally accepted picture of the electromagnetic
vacuum suggests that there is no such thing as empty space.
Quantum electrodynamics tells us that even in the absence
of any free charges or radiation the vacuum is actually
permeated by fluctuating electromagnetic fields. An im-
portant physical consequence of this view is that the fluc-
tuating fields can polarize atoms resulting in a long range
attractive force between electrically neutral matter: the
van der Waals (vdW) interaction [1]. This microscopic
force is believed to be responsible for the cohesion of
nonpolar liquids, the latent heat of many materials, and
deviations from the ideal gas law. The polarized atoms can
also interact with their electrical image in a surface, result-
ing in an atom-surface vdW force [2]. For example, nearby
surfaces can distort the radial symmetry of carbon nano-
tubes [3] and deflect the probes of atomic force micro-
scopes [4]. Atom-surface interactions can also be a source
of quantum decoherence or uncontrolled phase shifts,
which are important considerations when building practi-
cal atom interferometers on a chip [5]. For the case of an
atom near a surface the vdW potential takes the form
V!r" # $C3r$3, where C3 describes the strength of the
interaction and r is the atom-surface distance [1]. This
form of the vdW potential is valid in the limit of atom-
surface distances smaller than the principle transition
wavelength of the atoms, typically &1 !m.

Previous experiments have shown how atom-surface
interactions affect the intensity of atom waves transmitted
through cavities [6], diffracted from material gratings
[7,8], and reflected from surfaces [9]. However, as we shall
see, none of these experiments provide a complete charac-
terization of how atom-surface interactions alter the phase
of atom waves. In order to monitor the phase of an atom
wave, one must have access to the wave function itself ( ),
not just the probability density for atoms (j j2). In this
Letter an atom interferometer is used to directly observe
how atom-surface interactions affect the phase of atom
waves, as proposed in [10]. This observation is significant
because it offers a new measurement technique for the

vdW potential and is of practical interest when designing
atom optics components on a chip [11,12].

When an atom wave propagates through a cavity, it
accumulates a spatially varying phase due to its interaction
with the cavity walls, given by the WKB approximation

"!#" % "o & $"!#" # $ lV!#"
@v ; (1)

where # is the position in the cavity, l is the interaction
length, V!#" is the atom-surface potential within the cavity,
@ is Planck’s constant, and v is the particle velocity [8].
Equation (1) also separates the induced phase "!#" into
constant "o and spatially varying $"!#" parts. A plot of
the phase "!#" from Eq. (1) is shown in Fig. 1 for the
cavity geometry and vdW interaction strength in our ex-
periment. If these cavities have a width w and are oriented
in an array with spacing d, then the atom wave in the far
field will have spatially separated components (diffraction
orders) with complex amplitudes
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FIG. 1. Accumulated phase "!#" of an atom wave as a func-
tion of cavity position # due to a vdW interaction with C3 #
3 meV nm3. The atom wave has propagated through a 150 nm
long cavity at a velocity of 2 km=s. The gray rectangles indicate
the location of the cavity walls which are 50 nm apart. Notice
how there is a nonzero constant phase offset "o ' 0:05 rad.

PRL 95, 133201 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
23 SEPTEMBER 2005

0031-9007=05=95(13)=133201(4)$23.00 133201-1  2005 The American Physical Society

gap width = 50 nm

introduction: atom interferometers introduction: atom interferometers



S. Lepoutre, H. Jelassi, V.P.A. Lonig, 
G. Trénec, M. Büchner, A. D. Cronin,  
and J. Vigué, EPL 88, 20002 (2009)   
S. Lepoutre et al. , EPJD 62, 309 (2011) 

John D. Perreault and Alexander D. Cronin,  
PRL 95, 133201 (2005)   

 atom-surface interaction Non-planar geometries: atom-surface interaction  introduction: atom interferometers

Bragg atom interferometer
Eur. Phys. J. D 62, 309–325 (2011)
DOI: 10.1140/epjd/e2011-10584-7

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL D

Atom interferometry measurement of the atom-surface
van der Waals interaction
S. Lepoutre1, V.P.A. Lonij2, H. Jelassi1,3, G. Trénec1, M. Büchner1, A.D. Cronin2, and J. Vigué1,a
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Abstract. Using a nano-scale grid as a phase-shifting component, an atom interferometer has been utilized
to study atom-surface van der Waals (VdW) interactions. We report phase shifts on the order of 0.2 rad,
with a few percent uncertainty. We also report the velocity-dependent attenuation of atomic de Broglie
wave amplitude that occurs in conjunction with the observed phase shifts. From these data we deduce the
strength of the VdW potential and its dependence on the atom-surface separation. We discuss how our
measurements can be used to set limits on the strength of non-Newtonian gravity at short length scales and
we discuss the possibility of measuring the atom-surface interactions over a larger range of atom-surface
distances. We also compare our results to several theoretical predictions for the VdW potential of Li near
a variety of surfaces.

1 Introduction

Diffraction of atoms by nano gratings has attracted at-
tention recently because the diffraction amplitudes are
sensitive to atom-surface van der Waals (VdW) interac-
tions. In references [1–8] the relative intensities of several
diffraction orders were studied, whereas in references [9,10]
atom interferometers were used to measure the additional
phase induced by a nano-grating. In this paper we show
how both the modulus and the phase of the zeroth order
diffraction amplitude can be reported from a single ex-
periment. We used these data to measure the strength of
the VdW potential at different atom-surface separations
and to set experimental limits on possible Yukawa-type
modification of Newtonian gravity at short length scales.

With a separated beam atom interferometer [11],
almost any type of perturbation can be measured by trans-
mitting one arm of the interferometer through an interac-
tion region while the reference arm propagates freely. The
modulus and the phase of the transmission amplitude can
be determined from the interference signals. A variety of
such experiments have already been done: atomic elec-
tric polarizabilities have been measured with interaction
regions containing an electric field [12–14], complex scat-
tering amplitudes have been measured with an interaction
region containing a dilute gas [15–17], and in this paper
we describe an experiment where one arm of the inter-
ferometer passes through a nanostructure. The resulting
interaction depends on the atom-surface van der Waals
potential [9,10].

a e-mail: jacques.vigue@irsamc.ups-tlse.fr

Several previous experimental techniques have been
used to measure atom-surface interactions. The study of
the short-range (r < 1 nm, where r is the atom-surface dis-
tance) part of atom-surface interaction is well developed,
the detection of atom-surface bound states by inelastic
scattering experiments can give very accurate measure-
ments and we refer the reader to the review paper by
Hoinkes [18] for more details. However, inelastic scatter-
ing experiments do not give a direct access to the long
range part of this interaction (r > 1 nm). In this range,
atom-surface interaction is attractive and dominated by
the dipole-dipole term, which behaves as −C3/r3. Such a
potential may support a series of long-range bound states
which are difficult to detect because of insufficient reso-
lution and sensitivity. Laser spectroscopy of atoms inter-
acting with a dielectric surface has already given access
to the long-range part of the atom-surface interaction [19]
but this spectroscopy is sensitive only to the difference of
the interaction potentials corresponding to the different
internal states of the atom that are coupled by the laser.

Atom optics experiments, such as atom diffraction
from a nano grating, can be used to measure the long-
range interaction of the atom in its ground state with
the surface. The first experiment of this type was done in
1999 by Grisenti et al. [1], who measured the intensities of
the various diffraction orders of a nano grating as a func-
tion of the atom velocity. Several similar experiments have
been performed since then [4–6,8]. These experiments give
access to the modulus of the diffraction amplitude but not
to its phase which can be measured only by atom interfer-
ometry; this was done for the first time by Perreault and



LIMITATIONS:   
Quasi-static 
Ignores environment
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k = 2

k = 1
z0

z(t)

Well defined 
phase for each 

path!!

t = 0 t = T



atom-surface van der Waals 
interaction:  

fluctuating dipole interacts with its 
own field, after reflection by surface 

 non-local Casimir phase

interferometer: self-interaction also 
with a different wave-packet 

component

F Impens, R Behunin, C Ccapa-Ttira and PAMN, EPL 2013

F Impens, C Ccapa-Ttira, R Behunin and PAMN, Phys Rev A  2014



position of atomic 
center of mass

Electric field

Metallic plate

Hamiltonian in the electric 
dipole approx.

Full quantum theory of Casimir interferometers

 Non-planar geometries: atom-surface interaction  Atom interferometers as open quantum systems 

Atomic center-of-mass as an  
open quantum system : 
coupling with electromagnetic 
field and atomic dipole

dipole moment: 
internal atomic 

degrees of freedom

ĤAF = − ̂d ⋅ Ê( ̂ra)̂d
Ê(r)

̂ra



r2(t)

r1(t)

Initial state:

Interaction Hamiltonian:

(r,T)

Final entangled state:

Coherence:

Influence of the Environment!

\

5

A. Atomic interferences in presence of an
environment

Inspired by Ref. [19], we calculate the time evolu-
tion of the full quantum state, which is initially given
by | (0)i = 1p

2

�
| 1

E
(0)i+ | 2

E
(0)i

�
⌦ | DF (0)i, where

| DF (0)i = | D(0)i⌦ | F (0)i denotes the initial envi-
ronment (internal dipole and EM field) quantum state.
We discard the influence of the atom-surface interaction
on the external atomic motion (prescribed atomic tra-
jectories), which is a very good approximation in usual
experimental conditions [9]. In this section, we assume,
for simplicity, that the wave-packet width is much smaller
than the relevant field wavelengths (more general results
are derived in the following sections). Thus, the inter-
action is described by the Hamiltonians ĤAF (rk(t)) =
�d̂ · Ê(rk(t)) parametrized by the wave-packet trajec-
tories represented by the four-vectors rk(t) ⌘ (rk(t), t)
with k = 1, 2, and acting only on the dipole and EM field
Hilbert spaces [38]. We work in the interaction picture
and the transformed time-dependent interaction Hamil-
tonian reads

êHAF (rk(t)) = e
i
~ (ĤD+ĤF )t

⇣
�d̂ · Ê(rk(t))

⌘
e�

i
~ (ĤD+ĤF )t.

(9)
At time t = T , the full quantum state reads

| (T )i =
1p
2
| 1

E
(T )i⌦T e�

i
~
R T
0 dt êHAF (r1(t))| DF (0)i

+
1p
2
| 2

E
(T )i⌦T e�

i
~
R T
0 dt

0 êHAF (r2(t))| DF (0)i,

(10)

where T denotes the time-ordering operator.
Since the dipole and EM field states are not measured

in the experiment, we calculate the external reduced den-
sity operator ⇢ = TrDF (| (T )ih (T )|) . When replacing
(10) into this equation, the cross (interference) term rep-
resents the external atomic coherence, which we evaluate
in the position representation:

⇢12(r, r
0;T ) =

1

2
hr| 1

E
(T )ih 2

DF
(T )| 1

DF
(T )ih 2

E
(T )|r0i

(11)

Thus, the interference term ⇢(0)12 = 1
2 

2
E
(r0, T )⇤  1

E
(r, T )

is now multiplied by the scalar product of the disturbed
environment states

h 2
DF

(T )| 1
DF

(T )i ⌘ ei�12 . (12)

The complex phase �12 captures the environment e↵ect
on the external interference term accumulated over the
interaction time T :

ei�12 = h DF (0)|eT e
i
~
R T
0 dt êHAF (r2(t))

⇥T e�
i
~
R T
0 dt êHAF (r1(t))| DF (0)i (13)

with eT denoting the anti-time-ordering operator (earlier-
time operators on the left).

In general the final environmental quantum
states have a scalar product smaller than unity
|h 2

DF
(T )| 1

DF
(T )i| = e�Im�E

12 < 1, leading to an
attenuation of the interferometer fringe pattern. In
this case, the full quantum state | (T )i given by (10)
is entangled, indicating the transfer of which-path
information on the atomic motion to the environment.
The resulting decoherence has been theoretically studied
[24] and measured [25] for charged particles close to a
material surface. Here we focus on the complementary
e↵ect that is also present in the general formula (13) for
the complex phase �12. In addition to the loss of fringe
visibility, the coupling with the dipole and EM field dofs
also leads to a displacement of the interference fringes,
corresponding to the real part Re�12, which we analyze
in more detail in the remaining part of this paper.

B. Diagrammatic expansion of the
environment-induced phase

As in the previous section, we follow a linear re-
sponse approach and treat the dipolar coupling as a
small perturbation. Thus, we perform a diagrammatic
expansion of the time-ordered (and anti-time-ordered)
exponentials appearing in the the formula (13) for the
environment-induced complex phase �12 . We focus on
the lowest-order diagrams yielding a finite phase. Special
care is required, since the dipolar coupling Hamiltonians
êHAF (rk(t)) (9) taken at di↵erent times do not commute.
We calculate �12 to first order in the atomic polarizabil-
ity, allowing us to approximate ei�12 ' 1+i�12. This is a
valid approximation as long as the distance between the
atom and the plate is much larger than the atomic size
(this assumption also justifies the electric dipole approx-
imation).
It follows from (13) that first-order diagrams are pro-

portional to (h...i0 denoting the average over the intial
environment state | DF (0)i)

± i

~

Z
T

0
dt h d̂(t) · Ê(rk(t)) i0. (14)

and as a consequence vanish since the the atom has no
permanent dipole moment.
Thus, we focus on second-order diagrams, which are

quadratic in the EM field and dipole operators. There
are two di↵erent ways to build second-order diagrams
from Eq. (13): one can either take two interactions per-
taining to the same time-ordered (or anti-time-ordered)
exponential, or one may take one interaction from each
exponential. Diagrams of the first kind correspond
to a sequence of interactions along the same path,
and are referred to as “single-path” (SP) diagrams.
Diagrams of the second kind involve simultaneously two
distinct paths, and are thus called “double-path” (DP)
diagrams. The two contributions sum up to give the
complex environment-induced phase �12 = �SP

12 + �DP
12 .

⌘ ei�12
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0 êHAF (r2(t))| DF (0)i

| (T )i = 1p
2
| 1

E
(T )i⌦ | 1

DF
(T )i+ 1p

2
| 2

E
(T )i⌦ | 2

DF
(T )i

| k

DF
(T )i = T e�

i
h̄

R T

0
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Influence functional:

Interaction Hamiltonian:

eiΦ12 = ⟨ψ (2)
DF(T ) |ψ (1)
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Imaginary part of  : decoherence 

Real part of : local and non-local interferometric phases
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 Atom interferometers as open quantum systems 
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NON-LOCAL DOUBLE-PATH DIAGRAM!

Second-order term obtained from first-order along 
each path

 Atom interferometers as open quantum systems 
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anti-commutator):

GH

Ô, ij
(x;x0) =

1

~ h{Ô
f

i
(x), Ôf

j
(x0)}i. (1)

For the dipole and on-atom fields operator Ô = d̂, Ê(r̂a)
the arguments in (1) are two instants (x;x0) ⌘ (t, t0).
For the electric field operator Ô = Ê, these arguments
are two four-vectors (x;x0) ⌘ (r, t; r0, t0).

The linear susceptibilities (polarizability for the
dipole), generically written as retarded Green’s functions,
describe the linear response of field and dipole to dipole
and field perturbations, respectively:

GR

Ô, ij
(x;x0) =

i

~✓(t� t0)h[Ôf

i
(x), Ôf

j
(x0)]i (2)

with ✓(t� t0) denoting the Heaviside step function.
Note that the on-atom field Green’s functions as de-

fined by (1) and (2) are still quantum operators in the
Hilbert space corresponding to the atomic external dofs,
since the average is taken over the EM field dofs only.
We now take the average h GR,H

Ê(r̂a)
(t, t0) ik over the ex-

ternal quantum state | k

E
i corresponding to the single

atomic wave-packet k. We express the result in terms of
the atomic wave-functions  k

E
(r, t) = hr|e� i

~ ĤEt| k

E
(0)i,

of the external atomic propagator

K(r, t; r0, t0) = hr|e� i
~HE(t�t

0)|r0i, (3)

and of the electric field Green’s functions. For this
purpose, we switch to the Schrödinger picture with
respect to the external atomic dofs: Ê(r̂a)(t) =
e

i
~HEt

Ê(r̂, t)e�
i
~HEt with r̂ = r̂a(0) the atomic posi-

tion operator, and Ê(r, t) the quantized electric field
(Heisenberg-evolved with respect to the Hamiltonian
HF ) at the classical position r and time t. Using clo-
sure relations for the external atomic dofs, one obtains

hGR(H)

Ê(r̂a)
(t0, t)ik =

ZZ
d3rd3r0 k⇤

E
(r, t)K(r, t; r0, t0) k

E
(r0, t0)

⇥GR(H)

Ê
(r, t; r0, t0) . (4)

It is necessary to identify the physically relevant con-
tributions of the field response (and fluctuations) as far
as the atom-surface interaction is concerned. By isotropy
of the atomic dipole, only the trace of the electric field

Green’s functions GR(H)

Ê
(x;x0) ⌘

P
i
GR(H)

Ê ii
(x;x0) (with

the sum performed on the Cartesian indiex i = 1, 2, 3) is

needed to obtain the interaction energy. GR(H)

Ê
(x;x0) is

the sum of free-space and scattering contributions:

GR(H)

Ê
(x;x0) = GR(H),0

Ê
(x;x0) + GR(H),S

Ê
(x;x0) (5)

By symmetry the free-space contributions

GR(H),0

Ê
(r, t; r0, t0) depends only on |r� r

0| and t� t0 [34],

whereas the scattering contribution GR(H),S

Ê
(r, t; r0, t0)

can be written in terms of the image of the source point
r
0 in the particular case of a planar perfectly-reflecting
surface discussed in Sec. IV. More specifically, the
free-space retarded Green’s function GR,0

Ê
(r, t; r0, t0) rep-

resents the direct propagation from r
0 to r and does not

depend on the distance to the material surface, whereas
the scattering contribution GR,S

Ê
(r, t; r0, t0) corresponds

to the propagation with one reflection at the surface.
When replacing (5) into (4), the average on-atom field

Green’s functions also split into free-space and scatter-
ing contributions, and only the latter contributes to the
atom-surface interaction energy U int,S

k
(t) and hence to

the local Casimir phase 'loc
k

. The latter is derived by
following steps similar to those employed for point-like
wave-packets and using expression (4) with the field
Green’s function replaced by the scattering contribution

GR(H),S

Ê
(r, t; r0, t0) :

'loc
k

=
1

4

ZZ
T

0
dtdt0

ZZ
d3rd3r0 k⇤

E
(r, t)K(r, t; r0, t0) k

E
(r0, t0)

⇥
h
gH
d̂
(t, t0)GR,S

Ê
(r, t; r0, t0) + gR

d̂
(t, t0) GH,S

Ê
(r, t; r0, t0)

i
.

(6)

with gR(H)

d̂
(t, t0) representing any diagonal component of

the isotropic atomic dipole Green’s function GR(H)

d̂, ii
(t, t0).

The two contributions appearing in (6) correspond to the
separate physical e↵ects responsible for the atom-surface
dispersive interaction: radiation reaction and field fluctu-
ations [35, 36]. The former, proportional to the field re-
tarded Green’s function, dominates in the van der Waals
un-retarded short-distance limit and is of particular rel-
evance in the following sections. Physically, it represents
the self-interaction between the fluctuating dipole at time
t and position r with its own electric field, produced at an
earlier time t0 and position r

0, after bouncing o↵ the ma-
terial surface. This interpretation provides an indication
that a cross non-local interaction might also exist, with
the field produced at one wave-packet component propa-
gating to a di↵erent wave-packet component, as discussed
in detail in the following sections.

As a first check of (6), we consider the limit of very nar-
row wave-packets in order to compare with Ref. [14]. We
assume that the wave-packet width is much shorter than
the relevant EM field wave-lengths, and then approxi-
mate the position arguments of the Green’s functions

G(R)H,S

Ê
(r, t; r0, t0) by the central atomic positions rk(t)

and rk(t0) taken along the trajectory k at the respective
times t, t0. In this case, we can isolate the atomic prop-
agation integral  k

E
(r, t) =

R
d3r0K(r, t; r0, t0) k

E
(r0, t0) in

(6) and find

'loc
k

⇡ 1

4

ZZ
T

0
dtdt0

h
gH
d̂
(t, t0)GR,S

Ê
(rk(t), rk(t

0)) (7)

+gR
d̂
(t, t0) GH,S

Ê
(rk(t), rk(t

0))
i
.

Path 1

Path 2

Casimir Interactions: Diagrammatic Picture
Non-local double path atomic phase:

Path 1

Path 2

Linear response susceptibilities:Fluctuations:



Atom Interferometer: 
One arm parallel to the plate 
Other arm going away from the plate

«Cross-talks» between the two paths

(a)

rI2(t’)

r1(t) r1

rI2

rI1

r2r2(t)

rI1(t’)

r1

rI2

rI1

(b)
r2(t’)

r1(t’)

Asymmetry avoids cancellation!

Dynamical Casimir-like non-local atomic phase



Double-path phase:

Non-local double-path Casimir atomic phase

87Rb atom:

Atomic polarizability

For narrow wave-packets and 
in the saturation regime where 

Wide atomic packets:

Narrow atomic packets:

Distance of the wave-packet center to the plate:
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GHz rotation of optically trapped nanoparticles

Opportunity to probe dynamical Casimir effects….?



Sagnac Atom Interferometer

Rotating 
frame

Ex: embarked atom 
interferometer



Inertial frame and rotating 
conductor

Sagnac effect in an inertial frame?
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Quantum Sagnac phase near a spinning 
particle

Casimir phase:

Spinning 
nano-particle

a magnetic field confined to a solenoid imprints a phase in a
region free of magnetic fields. Here, we show that a rotation
confined to a domain of space imprints a phase on matter
waves probing quantum vacuum fluctuations outside the
rotating region.
For simplicity, we consider a nanoparticle rotating around

an axis of symmetry with constant angular velocity Ω. In
this case, the modification of the surrounding quantum field
arises from the frequency dependence of the particle
dielectric constant. We consider a two-level atom in the
ground state interactingwith the quantum vacuum field. The
atomCM is in a quantum superposition of twowave packets
that propagate in the vicinity of the spinning nanoparticle as
indicated in Fig. 1. We show that the resulting QVSP is
geometric, i.e., independent of the atomic velocity [48,49]
in the limiting case of very narrow wave packets.
Furthermore, we express the QVSP as the circulation of
a geometric vector field, analog to the vector potential in the
Aharonov-Bohm effect, along the interferometer paths. The
effect can be enhanced by considering nanoparticles with a
plasmon resonance [50] in order to optimize the material
dispersion at the atomic transition frequency.
Motional van der Waals (vdW) atomic phase.—We

consider a moving atom interacting with the rotating nano-
particle between the initial and final times t ¼∓ T=2. The
atomic waves acquire a phase associated with the dipolar
interaction Ĥdip ¼ −d̂ · Ê, with d̂ representing the atomic
dipole moment operator. The electric field operator Ê is
taken at the instantaneous average atomic position rkðtÞ ¼
hr̂ðtÞik for each wave packet k. We evaluate the phase
difference Δϕ12 accumulated by the coherent superposition
state of two narrow atomic wave packets following the two
distinct paths P1 ¼ ½r1ðtÞ%, P2 ¼ ½r2ðtÞ%. Up to second
order in perturbation theory, this phase difference reads [29]

Δϕ12 ¼ φ11 − φ22 þ φ12 − φ21; ð1Þ

φkl ¼
1

4

ZZ
T=2

−T=2
dtdt0fgH

d̂
ðt; t0ÞGR;S

Ê
½rkðtÞ; t; rlðt0Þ; t0%

þ gR
d̂
ðt; t0ÞGH;S

Ê
½rkðtÞ; t; rlðt0Þ; t0%g: ð2Þ

The contributions φkl for k ¼ l and k ≠ l correspond to
local and nonlocal phases, respectively. In the concrete
applications discussed later on, the local phases ϕk ≡ φkk
will play a more important role. We have used the trace of
the retarded Green’s function for the scattered electric field
GR;S
Ê

ðr; t; r0; t0Þ ¼ Tr½GR;S
Ê

ðr; t; r0; t0Þ%, which captures how
electrodynamical propagation is modified by the presence
of the nanoparticle (scatterer) placed at the origin. Likewise,
the trace GH;S

Ê
of the Hadamard Green’s function represents

the change in the field fluctuations induced by the presence
of the nanoparticle. The retarded Green’s function of a
vectorial operator ÔðtÞ is defined as the averaged commu-
tatorGR

Ô ij
ðt; t0Þ ¼ ði=ℏÞΘðt − t0Þh½ÔiðtÞ; Ôjðt0Þ%iwithΘðτÞ

denoting the Heaviside function. The Hadamard Green’s
function corresponds to the average value of the anticom-
mutator GH

Ô ij
ðt; t0Þ ¼ ð1=ℏÞhfÔiðtÞ; Ôjðt0Þgi.

The first term on the rhs of (2) accounts for the electric
field response to dipole fluctuations, while the second one
corresponds to the dipole response to vacuum fluctuations
modified by the presence of the nanoparticle. The dipole
Hadamard Green’s function is isotropic and has the
analytical form gH

d̂ ij
ðt; t0Þ ¼ αA0ω0 cosω0ðt − t0Þδij for a

two-level model. Here, αA0 represents the static polariz-
ability and ω0 is the transition frequency. We focus on the
nonretarded vdW regime, for which the atom-particle
distance rðtÞ is much smaller than the transition wavelength
λ0 ¼ 2πc=ω0. As shown below, the QVSP is maximized in
the immediate vicinity of the rotating nanoparticle, which
turns the vdW regime more interesting for experimental
implementations.
We now consider the retarded Green’s function for the

scattered electric field GR;ðSÞ
Ê ij

ðr; t; r0; t0Þ. This function

corresponds to the ith component of the electric field at
position r and time t induced by an instantaneous point
dipole oriented along the jth direction at position r0 and
time t0 after scattering at the nanoparticle at some inter-
mediate time t00 such that t0 < t00 < t. From now on, we
assume that the nanoparticle is very small and neglect
multipolar contributions beyond the electric dipolar one.
The retarded Green’s function in the frequency domain can
then be expressed in terms of the electric polarizability
tensor αΩðωÞ of the rotating nanoparticle as

GR;S
Ê

ðr; r0;ωÞ ¼ G0ðr; 0;ωÞ · αΩðωÞ · G0ð0; r0;ωÞ: ð3Þ

The free-space retarded Green’s function for the electric
field becomes frequency independent [51] G0

ijðr;r0;ωÞ≈
ð3RiRj=R2−δijÞ=ð4πϵ0R3Þ in the nonretarded vdW regime
(R¼r−r0). In the absence of rotation, any direction
orthogonal to the symmetry axis of the nanoparticle is a
principle axis of the polarizability tensor α0ðωÞ with an
eigenvalue denoted by α̃ðωÞ. Rotation around the symmetry
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FIG. 1. Scheme of the quantum vacuum Sagnac interferometer.
The center of mass of a ground-state atom propagates as a
quantum superposition of two wave packets around a spinning
neutral nanoparticle (angular frequency Ω).
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Quantum Sagnac phase

Local Quantum Sagnac phase (in the 
non-retarded approximation)

Real part of the spherical particle 
polarizability

= static atomic polarizability
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φkl ¼
1

4
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T=2

−T=2
dtdt0fgH

d̂
ðt; t0ÞGR;S

Ê
½rkðtÞ; t; rlðt0Þ; t0%

þ gR
d̂
ðt; t0ÞGH;S

Ê
½rkðtÞ; t; rlðt0Þ; t0%g: ð2Þ
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Ê
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Ê

ðr; t; r0; t0Þ%, which captures how
electrodynamical propagation is modified by the presence
of the nanoparticle (scatterer) placed at the origin. Likewise,
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Ê
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ðt; t0Þ ¼ ði=ℏÞΘðt − t0Þh½ÔiðtÞ; Ôjðt0Þ%iwithΘðτÞ

denoting the Heaviside function. The Hadamard Green’s
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ðt; t0Þ ¼ ð1=ℏÞhfÔiðtÞ; Ôjðt0Þgi.
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the immediate vicinity of the rotating nanoparticle, which
turns the vdW regime more interesting for experimental
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corresponds to the ith component of the electric field at
position r and time t induced by an instantaneous point
dipole oriented along the jth direction at position r0 and
time t0 after scattering at the nanoparticle at some inter-
mediate time t00 such that t0 < t00 < t. From now on, we
assume that the nanoparticle is very small and neglect
multipolar contributions beyond the electric dipolar one.
The retarded Green’s function in the frequency domain can
then be expressed in terms of the electric polarizability
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orthogonal to the symmetry axis of the nanoparticle is a
principle axis of the polarizability tensor α0ðωÞ with an
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FIG. 1. Scheme of the quantum vacuum Sagnac interferometer.
The center of mass of a ground-state atom propagates as a
quantum superposition of two wave packets around a spinning
neutral nanoparticle (angular frequency Ω).

PHYSICAL REVIEW LETTERS 127, 270401 (2021)

270401-2



69

Estimation of the Quantum Sagnac phase in an atom-Interferometer

Atomic wave-packets of finite width

Total phase = quasi-static van der Waals 
 + quantum Sagnac phase

Accessible quantum Sagnac phase

averaging over wave-packet width 
(as in Alexander D. Cronin and John D. Perreault,  
Phys. Rev. A 70, 043607 (2004))

Nanosphere radius

Atomic beam of 
width 
Atomic 
velocities 

Na atoms
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Conclusion: 
 Influence of the enviroment of the system 

of interest: decoherence, phase shift in an 
atom interferometer 

 Dynamical Casimir effects: emission of 
photons, non-unitary non-local phase in an 
atom interferometer; quantum Sagnac phase 

 Methods: master equation/Fokker-Planck 
equation; influence functional 
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