Quantum decoherence, Casimir effect, quantum vacuum fluctuations

Paulo A. Maia Neto
Instituto de Física, UFRJ, Rio de Janeiro, Brazil

École Doctorale QMat 182 - U. Strasbourg

December 2023

Current team

UFRJ

Guilherme Matos (graduate student)
François Impens (former CNRS at Nice)

UFF

Reinaldo de Melo e Souza
(former graduate student)

Previous collaborations

UFRJ - Macaé

Claudio Ccapa (former postdoc) 2022 †

UFRJ

Luis A S Machado (former graduate student)
Carlos Farina

Northern Arizona U.
Ryan Behunin (then at LANL)
Los Alamos Nat Lab
Diego Dalvit
and also several discussions with Ricardo Decca (IUPUI), Kanu Sinha (Arizona State and University of Arizona) and Clemens Jakubec (graduate student at U. Vienna)

Lecture 2

Part A) Decoherence of massive particles by radiation pressure continuation

- The quantum vacuum and the Casimir effect
- Dynamical Casimir effect
- Decoherence by radiation pressure: master equation, results at zero and finite temperatures

The quantum vacuum and the Casimir effect

The quantum vacuum

Quantum electromagnetic field

Ground state (no photon): quantum vacuum $E_{\text {vac }}=$ energy corresponding to quantum zero-point fluctuations of the electromagnetic field

Problem: E_{vac} is always infinite!

The quantum vacuum

Does the vacuum energy have a physical meaning ?
W. Pauli (1933) : "..here it is more consistent, in contrast with the material oscillator, to not introduce a zero-point energy ($\hbar \omega / 2$) per degree of freedom. On one hand, this energy would lead to an infinitely large energy density, and on the other hand it would not be observable since it cannot be emitted, absorbed, or scattered, and hence cannot be contained between walls and, as evident from common experience, does not produce any gravitational effect."

W. Pauli

1948 - Casimir finds that he could explain the interaction potential between ground state atoms in terms of variations of the vacuum energy with respect to the atomatom distance

Hendrik BG Casimir

The quantum vacuum

Simplest example: two neutral metallic plates in vacuum - distance L. Electromagnetic normal modes: frequencies depend on separation L !

Smallest wavelength that fits between plates: $2 L$

Modes with $\lambda>2 L$ (frequencies $\omega<\pi \mathrm{c} / L$) are suppressed!

$\lambda=L$

Casimir effect

Vacuum energy depends on the cavity length L
\Longrightarrow (usually) attractive force between neutral plates
Isolating the joint effect of the two plates: Casimir energy

$$
E_{C}=-\frac{\pi^{2}}{720} \frac{\hbar c}{L^{3}} A
$$

Casimir force between two perfect plane metallic plates at zero temperature
$F_{C} / A \approx 12 \mathrm{~N} / \mathrm{m}^{2}$ at $L=100 \mathrm{~nm}$ no field-matter coupling constant ...??? connection with van der Waals attraction?

Introduction: Casimir effect

Point-of-view of Quantum Optics/cavity QED:
Q density of modes $g(\omega)$ modified by the mirrors
Q reflection coefficients as seen by the intracavity field

- example: 1D model

$$
F=\int_{0}^{\infty} \frac{d \omega}{2 \pi} \frac{\hbar \omega}{c}(g(\omega)-1) r_{1}^{(\omega)}
$$

Net force: attractive! (van der Waals ok)
M-T Jaekel and S Reynaud, J. Phys. (Fr) I99I

Casimir effect

two metallic mirrors described by the plasma model

$$
\leftarrow A \quad \epsilon(\omega)=1-\frac{\omega_{p}^{2}}{\omega^{2}}
$$

plasma wavelength

$$
\lambda_{P}=\frac{2 \pi c}{\omega_{P}}
$$

van der Waals

The dynamical Casimir effect

From the Static to the Dynamical Casimir Effect

Casimir force: quantum average of the Maxwell stress tensor taking the field vacuum state $(T=0)$

2 plates: non-zero average ex: perfect reflectors Casimir 1948

$$
\langle F\rangle=F_{\mathrm{PP}}=-\frac{\pi^{2}}{240} \frac{\hbar c A}{d^{4}}
$$

single plate in vacuum:
symmetry

$$
\langle F\rangle=0
$$

Dynamical Casimir diffusion

single plate: $\langle\operatorname{vac}| F|\mathrm{vac}\rangle=0$
..but force fluctuations are present
Barton 1991
Jaekel \& Reynaud 1991
Eberlein 1992

Dean, Parsegian \& Podgornik 2013

Any particle scattering vacuum fluctuations/ thermal photons will develop (quantum)
Brownian fluctuations
open quantum system: environment = quantum electromagnetic field
at zero temperature, decoherence arises from the emission of photon pairs out of the vacuum state

2nd example: sphere radius R (PAMN \& S Reynaud 1993)

$$
\xi(t) \equiv\langle\operatorname{vac}|[F(t), F(0)]|\operatorname{vac}\rangle \quad \begin{gathered}
\text { Freq. domain: } \\
\tilde{\xi}[\omega]
\end{gathered}
$$

Large sphere:

$$
\omega R / c \gg 1 \Longrightarrow \tilde{\xi}[\omega] \approx \frac{2 \hbar^{2} \omega^{5} R^{2}}{45 \pi c^{4}}
$$

Dynamical Casimir diffusion

open quantum system: environment $=$ quantum electromagnetic field
at zero temperature, decoherence arises from the emission of photon pairs out of the vacuum state

Example: initial quantum superposition of ground
 and coherent states

$$
\left.\begin{array}{l}
|\Psi\rangle_{0}=\frac{1}{\sqrt{2}}\left(|0\rangle_{\mathrm{CM}}+\left|\alpha_{0}\right\rangle_{\mathrm{CM}}\right) \otimes|\mathrm{vac}\rangle_{\mathrm{F}} \\
\text { evolution } \\
|\Psi\rangle_{t}=e^{-i H t / \hbar}|\Psi\rangle_{0} \\
|\Psi\rangle_{t}=\frac{1}{\sqrt{2}}\left[|0\rangle_{\mathrm{CM}} \otimes|\mathrm{vac}\rangle_{\mathrm{F}}+|\alpha(t)\rangle_{\mathrm{CM}} \otimes\left(\underline{B(t)}|\mathrm{vac}\rangle_{\mathrm{F}}+\int d \omega_{1} d \omega_{2} b\left(\omega_{1}, \omega_{2}, t\right)\left|1_{\omega_{1}}, 1_{\omega_{2}}\right\rangle_{\mathrm{F}}\right)\right. \\
\begin{array}{c}
\text { amplitute of persistence } \\
\text { in the vacuum state }
\end{array} \begin{array}{c}
\text { amplitute of emission } \\
\text { of pair of photons }
\end{array}
\end{array}\right]
$$

Emission of dynamical Casimir photons provide 'which-way' information about the quantum alternatives or 'paths' D. A. R. Dalvit \& PAMN 2000

Dynamical Casimir effect

Understanding the dynamical Casimir effect

Take a mirror oscillating at frequency Ω
Reflection of field of frequency $\omega_{\text {in }}$ generates frequency sidebands

$$
\omega_{\mathrm{in}}+\Omega, \omega_{\mathrm{in}}-\Omega
$$

$$
\begin{aligned}
& \omega_{\text {in }}-\Omega \\
& \stackrel{\omega_{\text {in }}}{\longrightarrow} \omega_{\text {in }}+\Omega
\end{aligned}
$$

Ω

Dynamical Casimir effect

Important property:

No radiation in the quasi-static limit

Radiation is a consequence of a sudden change of the boundary conditions

Mechanical frequency Ω

induces the generation of photons at frequencies

$$
\omega \leq \Omega
$$

in the non-relativistic regime

Dynamical Casimir effect

single, non-relativistic plane mirror in 3D, harmonic oscillation frequency Ω

Spectrum displays symmetry around $\Omega / 2$: pair of photons with the same polarization and frequencies ω_{1}, ω_{2} such that

$$
\omega_{1}+\omega_{2}=\Omega
$$

More TM than TE photons:

$$
\frac{d N_{\mathrm{TM}}}{d t}=11 \frac{d N_{\mathrm{TE}}}{d t}
$$

Total photon emission rate

$$
A \quad v_{\max }=\Omega \times \text { amplitude }
$$

$$
\frac{d N}{d t}=\frac{1}{15} \frac{A}{\lambda_{\text {mech }}^{2}}\left(\frac{v_{\max }}{c}\right)^{2} \Omega
$$

