SPIN 1/2

σ_{1}, σ_{2} e σ_{3} também são observáveis incompatíveis

Fig. 1.6. Three possible orientations for the Stem-Gerlach magnet, making 120°
angles with each other. The three unit vectors e_{1}, e_{2} and e_{3} sum up to zero.
$\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}=\mathbf{0}$
$\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}\right) \cdot \mu=0$
argumento contrafactual: não é possível determinar simultaneamente os valores dos três
$\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right) \mu_{B}=0 \rightarrow \sigma_{1}+\sigma_{2}+\sigma_{3}=0$ observáveis incompatíveis

3 aparatos de Stern+Gerlach/ 3 cristais em sequência

Cristal intermediário cada vez mais fino: overlap entre feixes ordinário e extraordinário

Soma sobre amplitudes de caminhos/estados intermediários, não probabilidades!!

Estrutura formal da MQ: espaço vetorial/álgebra linear

Revisão de Álgebra Linear

- Base de espaço vetorial. Dimensão.
- Produto interno ou escalar e métrica. Notação de Dirac: bra-ket
- Base ortonormal. Expansão em base ortonormal.

Revisão de Álgebra Linear

1. Base de espaço vetorial. Dimensão.

$$
\text { espaço vetorial } \varepsilon
$$

conjunto de vetores

$$
\mathcal{B}=\left\{\left|v_{1}\right\rangle,\left|v_{2}\right\rangle, \ldots,\left|v_{N}\right\rangle\right\}
$$

é uma base de \mathcal{E} se

- conjunto é linearmente independente
- geram todo o espaço vetorial ε
todas as bases de \mathcal{E} possuem o mesmo número de elementos
$=$ dimensão N

