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Problema matemático que requer apenas 
conhecimento de geometria e probabilidade

Percolação

2

Ótima introdução a transições de fases , 
relações de escala e grupo de renomalização



Exemplos
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•Pão de Queijo forno-de-minas na assadeira 
•Se botarmos muitos eles grudam 
•Podem formar pedaços maiores
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Figure 13.1: Cookies (circles) placed at random on a large sheet. Note that there is a path of
overlapping circles that connects the bottom and top edges of the cookie sheet. If such a path
exists, we say that the cookies “percolate” the lattice or that there is a “spanning path.” See
Problem 13.4d for a discussion of the algorithm used to generate this configuration.

groups of nearest neighbors. We define a cluster as a group of occupied nearest neighbor lattice
sites (see Fig. 13.2).

An easy way to study percolation uses the random number generator on a calculator. The
procedure is to generate a random number r in the unit interval 0 < r ≤ 1 for each site in the
lattice. A site is occupied if its random number satisfies the condition r ≤ p. If p is small, we
expect that only small isolated clusters will be present (see Fig. 13.3a). If p is near unity, we
expect that most of the lattice will be occupied, and the occupied sites will form a large cluster
that extends from one end of the lattice to the other (see Fig. 13.3c). Such a cluster is said to be a
spanning cluster. Because there is no spanning cluster for small p and there is a spanning cluster
for p near unity, there must be an intermediate value of p at which a spanning cluster first exists
(see Fig. 13.3b). We shall see that in the limit of an infinite lattice, there exists a well defined
threshold probability pc such that:

For p < pc, no spanning cluster exists and all clusters are finite.
For p ≥ pc, one spanning cluster exists.

We emphasize that the defining characteristic of percolation is connectedness. Because the
connectedness exhibits a qualitative change at a well defined value of a continuous parameter, we
shall see that the transition from a state with no spanning cluster to a state with one spanning
cluster is a type of phase transition.

Our real interest is not in large cookies or in abstract models, but in the applications of
percolation. An example of the application of percolation is to the electrical conductivity of

Percolação Conectividade

•Partículas metálicas em uma matriz condutora 
•Após uma determinada concentração, o sistema 
conduz 

M. Garcı́a del Muro et al. 3
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Figure 3: Bright field TEM images of Au-ZrO2 films with (a) x = 0.08, (b) x = 0.23, (c) x = 0.41, (d) x = 0.51, and (e) x = 0.55. The inset
in Figure 3(e) shows lattice fringes inside an Au particle.

of τ = 34 ns). The samples were deposited at room temper-
ature in a vacuum chamber with rotating composite targets
made of sectors of ZrO2 and metal (silver, cobalt, or gold).
Several surface ratios of target components led to obtain-
ning samples with different volume fractions x of Ag/Co/Au,
ranging from metallic to dielectric regimes. The distance be-
tween target and substrate was fixed to 35 mm. The laser
fluency typically used was about 2 J/cm2. Zirconia was sta-
bilized with 7 mol.% Y2O3, which provides the matrix with
very good properties, such as good oxidation resistance, ther-
mal expansion coefficient matching that of metal alloys, and
very high fracture toughness values. It has been observed
that ZrO2 matrix gives rise to sharper interfaces between the
amorphous matrix and nanoparticles [16]. Besides, the high
oxygen affinity of ZrO2 prevents oxidation of the metallic
nanoparticles.

Sample composition was determined by microprobe
analyses. The size distribution of metal nanoparticles was de-
termined from TEM. The substrates for TEM experiments
were membrane windows of silicon nitride, which enabled
direct observation of as-deposited samples.

3. RESULTS AND DISCUSION

The analysis of TEM images allowed us to obtain the par-
ticles size distribution for each metal concentration. TEM
images provide direct observation of the nanoparticles even
for very low metal contents. Typical TEM images are shown
in Figure 1 for Ag-ZrO2, in Figure 2 for Co-ZrO2, and in
Figure 3 for Au-ZrO2. The dark regions correspond to the

Ag, Co, and Au particles and the light regions to the amor-
phous ZrO2 matrix. The particles are seen to have clearly de-
fined interfaces with the matrix.

The lattice fringes observed in the metal grains corre-
spond to Ag/Co/Au atomic planes indicating good crys-
tallinity even for very low metal content (see insets to Fig-
ures 1–3). Lattice fringes are not present in the ZrO2 matrix,
confirming its amorphous nature.

The particles have spherical shape for xAg < 0.18,
xCo < 0.25, and xAu < 0.41, (see Figures 1(a) and 1(b), 2(a)–
2(c), and 3(a) and 3(b)). For xAg > 0.18, xCo > 0.25, and
xAu > 0.41, the neighboring particles start to coalesce, giving
rise to larger particles not always with spherical shape (see
elongated particles in Figures 1(b)–1(d), 2(d), and 3(c) and
3(d)). Increasing the metal content, the particles form big ag-
gregates (see Figures 1(e), 2(e), and 3(e)), indicating rapid
approaching to the percolation threshold, above which metal
forms a continuum.

The distributions of particle size are well described by a
log-normal function:

f (D) = 1√
2πσD

exp

[
− ln 2(D/D0

)

2σ2

]
, (1)

where the fitting parameters D0 and σ are the most probable
particle size and the width of the distribution, respectively,
(see Table 1). At low Ag content, the particle size distribution
is centered between 1 and 2 nm (see Figure 1(a)). Increas-
ing the Ag content, the size distribution shifts towards larger
sizes, due to coalescence of smaller particles into the big ones,



Transições de fase
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• Mudança da fase de um sistema termodinâmico 
• Transição é caracterizada por mudança abrupta 

em uma ou mais propriedades físicas (muitas 
vezes em função da temperatura)  
• Fases líquidas, sólidas e gasosas.  
• Diferentes propriedades magnéticas em 

transições magnéticas (ver modelo de Ising) 
• Condutividade em transições metal-isolante 

• Exemplo de transição de fase de percolação 

• Transição de isolante para metal devido à 
percolação



Estudando percolação
• Estudamos percolação em uma rede

5July, 2006 Random media summer school

What is Percolation?

• Consider percolation on a lattice

• Behavior depends on dimensionality (a lot) and lattice

type (a little)

• Can also consider continuum percolation (more

realistic for us, but not covered in these lectures)

square (2D)
honeycomb (2D) cubic (3D)

• Comportamento da percolação depende muito da 
dimensionalidade e pouco do tipo de rede



Procedimento
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• Para cada sítio da rede, gerar um número 
aleatório r 
• 0< r <1 

• O sítio será ocupado se o número r satisfazer a 
condição r≤p 
• p é um número fixo que define a probabilidade 

de ocupação dos sítios  
• Sítios serão ocupados de forma aleatória 

vizinhos ñ vizinhos



Propriedades dos Clusters
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(a)   (b) 

Figure 13.2: Example of a site percolation cluster on a square lattice of linear dimension L = 2.
The two nearest neighbor occupied sites (shaded) in (a) are part of the same cluster; the two
occupied sites in (b) are not nearest neighbor sites and do not belong to the same cluster.

p = 0.2 p = 0.59 p = 0.8

(a) (b) (c)

Figure 13.3: Examples of site percolation clusters on a square lattice of linear dimension L = 16
for p = 0.2, 0.59, and 0.8. On the average, the fraction of occupied sites (shaded squares) is equal
to p. Note that in this example, there exists a cluster that “spans” the lattice horizontally and
vertically for p = 0.59.

composite systems made of a mixture of metallic and insulating materials. An easy way to make
such a system is to place a mixture of small plastic and metallic spheres of equal size into a container
(see Fitzpatrick et al.). Care must be taken to pack the spheres at random. If the metallic domains
constitute a small fraction of the volume of the system, electricity cannot be conducted and the
composite system is an insulator. However, if the metallic domains comprise a sufficiently large
fraction of the container, electricity can flow from one domain to another and the composite system
is a conductor. The description of the conduction of electricity through composite materials can
be made more precise by introducing the parameter φ, the volume fraction of the container that
consists of metallic spheres. The transition between the two types of behavior (nonconducting
and conducting) occurs abruptly as φ (the analog of p) is increased and is associated with the
nonexistence or existence of a connected path of metallic spheres. More realistic composite systems
are discussed in Zallen’s book.

Percolation phenomena also can be observed with a piece of chicken wire or wire mesh. Watson
and Leath measured the electrical conductivity of a large piece of uniform steel-wire screen mesh

• Se p<<1, poucos sítios ocupados 
• apenas clusters isolados 

• se p ≅1, quase toda a rede é ocupada 
• sítios formam grande cluster que atravessa a rede 

• “Spanning cluster”(SC) ou cluster de 
percolação



Transição de Percolação
• p<pc ➙ Não há Spanning Cluster 

• p>pc ➙ Existe um Spanning Cluster 

• Existência ou não de SC ➙ Transição de fase de 
2a ordem 

• É o Spanning Cluster que leva à transição 
metal isolante do exemplo! 

• pc é a probabilidade de ocupação dos sítios para 
qual aparece um SC na rede infinita 

• Na rede finita há uma probabilidade finita de 
termos um SC para p<pc
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Percolação na rede finita
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•Podemos calcular pc(L) e extrapolar resultado para L infinito 
•Finite-size scaling 

Prob. de aparecimento de um SC 
numa rede finita

  

Dependence on the size of system



S. Cluster na rede finita

•Definição de S. Cluster é arbitrária 
•pc(L) é valor médio de p para primeira vez que o SC 
aparece 
•Qualquer critério leva ao mesmo valor de pc ao 
extrapolarmos pc(L=∞) 
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Outras Quantidades

• W(p) é probabilidade de aparecimento de um spanning 
cluster em um sistema finito  

• P(p) é a probabilidade de que um sítio pertença ao SC 
ou a densidade do SC, já que 
• P(p) = (num de sítios no SC)/ num de sítios 

ocupados  
11



• P é parametro de ordem: 

• P≠0 para p>pc e P=0 para p<pc 

• Perto da transição.. 

• Em p=pc , S. Cluster é fractal já que densidade 
tende a zero quando L tende a infinito 

• Transição de fase geométrica 

• Com outras quantidades, podemos mostrar que 

• Outro finite-size scaling! 

Criticalidade

12

P (p) ⇥ (p� pc)�

P (p) � L�/⇥
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which defines the critical exponent γ. The common critical exponents for percolation are summa-
rized in Table 13.1. For comparison, the analogous critical exponents of a magnetic critical point
also are shown.

Quantity Functional form Exponent d = 2 d = 3
Percolation
order parameter P∞ ∼ (p − pc)β β 5/36 0.4
mean size of finite clusters S(p) ∼ |p − pc|−γ γ 43/18 1.8
connectedness length ξ(p) ∼ |p − pc|−ν ν 4/3 0.9
cluster numbers ns ∼ s−τ p = pc τ 187/91 2.2
Ising model
order parameter M(T ) ∼ (Tc − T )β β 1/8 0.32
susceptibility χ(T ) ∼ |T − Tc|−γ γ 7/4 1.24
correlation length ξ(T ) ∼ |T − Tc|−ν ν 1 0.63

Table 13.1: Several of the critical exponents for the percolation and magnetism phase transitions
in d = 2 and d = 3 dimensions. Ratios of integers correspond to known exact results. The critical
exponents for the Ising model are discussed in Chapter ??.

Because we can simulate only finite lattices, a direct fit of the measured quantities ξ, P∞, and
S(p) to their assumed critical behavior for an infinite lattice would not yield good estimates for
the corresponding exponents ν, β, and γ (see Problem 13.9b). The problem is that if p is close
to pc, the extent of the largest cluster becomes comparable to L, and the nature of the cluster
distribution is affected by the finite size of the system. In contrast, for p far from pc, ξ(p) is
small in comparison to L and the measured values of ξ, and hence the values of other physical
quantities, are not appreciably affected by the finite size of the lattice. Hence for p ≪ pc and
p ≫ pc, the properties of the system are indistinguishable from the corresponding properties of a
truly macroscopic system (L → ∞). However, if p is close to pc, ξ(p) is comparable to L and the
behavior of the system differs from that of an infinite system. In particular, a finite lattice cannot
exhibit a true phase transition characterized by divergent physical quantities. Instead, ξ and S
reach a finite maximum at p = pc(L).

The effects of the finite size of the system can be made more quantitative by the following
argument. Consider for example, the critical behavior (13.14) of P∞. As long as ξ is much less
than L, the power law behavior given by (13.14) is expected to hold. However, if ξ is comparable
to L, ξ cannot change appreciably and (13.14) is no longer applicable. This qualitative change in
the behavior of P∞ and other physical quantities occurs for

ξ(p) ∼ L ∼ |p − pc|−ν . (13.16)

We invert (13.16) and write

|p − pc| ∼ L−1/ν . (13.17)

The difference |p− pc| in (13.17) is the “distance” from the critical point at which “saturation” or
finite size effects occur. Hence if ξ and L are approximately the same size, we can replace (13.14)



Grupo de renormalização
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Figure 13.10: An example of a b = 4 cell used on the square lattice. The cell contains b2 sites
which are rescaled to a single supersite after a renormalization group transformation.

preserve the main features of the original lattice and hence its connectedness (and its symmetry),
we assume that a renormalized site is occupied if the original group of sites spans the cell. We
adopt the vertical spanning criterion for convenience. The effect of performing a renormalization
transformation on typical percolation configurations for p above and below pc is illustrated in
Fig. 13.11 and Fig. 13.12 respectively. In both cases, the effect of the successive transformations
is to move the system away from pc. We see that for p = 0.7, the effect of the transformations
is to drive the system toward p = 1. For p = 0.5, the trend is to drive the system toward
p = 0. As we discuss in the following, we can associate pc with an unstable fixed point of the
renormalization transformation. Of course, because we began with a finite lattice, we cannot
continue the renormalization transformation indefinitely.

Program rg implements a visual interpretation of the renormalization group. The program
divides the screen into four windows with the original lattice in the first window and three renormal-
ized lattices in windows 2 through 4. In Program site we represented an occupied site at lattice
point x,y as a filled circle of unit diameter centered about the point (x, y). In contrast, Program
rg represents an occupied site at x,y as a filled box whose lower left corner is at x − 1, y − 1.
Problem 13.10. Visual renormalization group
Use Program rg with L = 32 to estimate the value of the percolation threshold. For example,
confirm that for small p, e.g., p = 0.4, the renormalized lattice almost always renormalizes to
a nonspanning cluster. What happens for p = 0.8? How can you use the properties of the
renormalized lattices to estimate pc?

Although a visual implementation of the renormalization group allows us to estimate pc, it
does not allow us to estimate the critical exponents. In the following, we present a renormaliza-
tion group method that allows us to obtain pc and the critical exponent ν associated with the
connectedness length. This analysis follows closely the method presented by Reynolds et al. (see
references).

The implementation of a renormalization group method consists of two parts: (i) an average
over the underlying variables together with a specification of the variables that determine the state
of the renormalized configuration, and (ii) a parameterization of the renormalized configuration in
terms of the original parameters and possibly others. We adopt the same average as before, i.e.,
we replace the bd sites within a cell of linear dimension b by a single site that represents whether
or not the original lattice sites span the cell. The second step is to determine which parameters
specify the new configuration after the averaging. We make the simple approximation that each
cell is independent of all the other cells and is characterized only by the probability p′ that the cell
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L =16

L' = 4 L' = 2  

L' = 8

Figure 13.12: A percolation configuration generated at p = 0.5. The original configuration has
been renormalized three times by transforming blocks of four sites into one new site. What would
be the effect of an additional transformation?

0.5) = 0.44. If we perform a second renormalization transformation, we have p2 = R(p1) = 0.35. It
is easy to see that further transformations drive the system to the fixed point p = 0. Similarly, if we
begin with p = p0 = 0.7, we find that successive transformations drive the system to the fixed point
p = 1. This behavior is qualitatively similar to what we observed in the visual renormalization
group.

To find the nontrivial fixed point associated with the critical threshold pc, we need to find the
special value of p such that

p∗ = R(p∗). (13.22)

For the recursion relation (13.21), we find that the solution of the fourth degree equation for p∗

yields the two trivial fixed points, p∗ = 0 and p∗ = 1, and the nontrivial fixed point p∗ = 0.61804
which we associate with pc. This calculated value of p∗ for b = 2 should be compared with the
estimate pc = 0.5927.

To calculate the critical exponent ν, we recall that all lengths are reduced on the renormalized
lattice by a factor of b in comparison to the lengths in the original system. Hence the connectedness

Utilizar mesma regra global para 
definir se célula 2x2 tem SC.
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L = 16 L' = 8

L' = 4 L' = 2

Figure 13.11: A percolation configuration generated at p = 0.7. The original configuration has
been renormalized three times by transforming cells of four sites into one new supersite. What
would be the effect of an additional transformation?

is occupied. The renormalization transformation between p and p′ reflects the fact that the basic
physics of percolation is connectedness, because we define a cell to be occupied only if it contains
a set of sites that span the cell. If the sites are occupied with probability p, then the cells are
occupied with probability p′, where p′ is given by a renormalization transformation or a recursion
relation of the form

p′ = R(p). (13.20)

The quantity R(p) is the total probability that the sites form a spanning path.
An example will make the formal relation (13.20) more clear. In Fig. 13.13, we show the seven

vertically spanning site configurations for a b = 2 cell. The probability p′ that the renormalized
site is occupied is given by the sum of the probabilities of all spanning configurations:

p′ = R(p) = p4 + 4p3(1 − p) + 2p2(1 − p)2. (13.21)

In general, the probability p′ of the occupied renormalized sites is different than the occupation
probability p of the original sites. For example, suppose that we begin with p = p0 = 0.5. After a
single renormalization transformation, the value of p′ obtained from (13.21) is p1 = p′ = R(p0 =

b=2



Grupo de renormalização

• p’=R(p)=p4+4p3(1-p)+2p2(1-p) 

• Soma das probabilidades de todas as 
configurações de SC na célula 2x2  

• (1-p) é a prob. do sítio estar vazio  

• Pontos fixos: p*=R(p*) 

• p*=0, p*=1, p*=0.6180 

• Pode ser usado p/ encontrar expoentes
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Catalogando clusters

• Iniciar com rede vazia. 
• Varrer a rede 

• Para cada sítio varrido: 
• sorteio de r. Se r<p, ocupa sítio  
• verifica vizinho tiver já está 

catalogado. 
• se sim, segue mesmo label do 

vizinho (l) 
• se não, utiliza novo label m

16



catalogando..
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• verifica vizinho tiver já está catalogado. 
• se sim, segue mesmo label do vizinho (l) 

• se não, utiliza novo label m 
• caso vizinhos tenham labels distintos, 

fazer link entre labels (vetor links) 
• ex: link(m)=n 

• Se mesmo label atingiu extremidades da 
rede, temos um SC 



Leath Algorithm

• Ocupe uma único sítio semente na rede 
• Os primeiros vizinhos (4 na rede quadrada) 

são os sítios do perímetro 
• Para cada sítio do perímetro, gere um número 

aleatório. Se r<=p, sítio é ocupado e adicionado ao 
cluster. Senão, não é ocupado e não é testado 
novamente. 

• Para cada sítio ocupado, determine se há novos 
sítios de perímetro (vizinhos não testados) e 
adicione os novos à lista de perímetro 

• Repita até não haver sítios de perímetro a serem 
testados
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Leath Algorithm

• No Gould (pag 494-495)!
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Um único cluster
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