Workshop XII Nova Física no Espaço February - 2014

First measurements of σ_8

using SN data only

Tiago Castro e Miguel Quartin

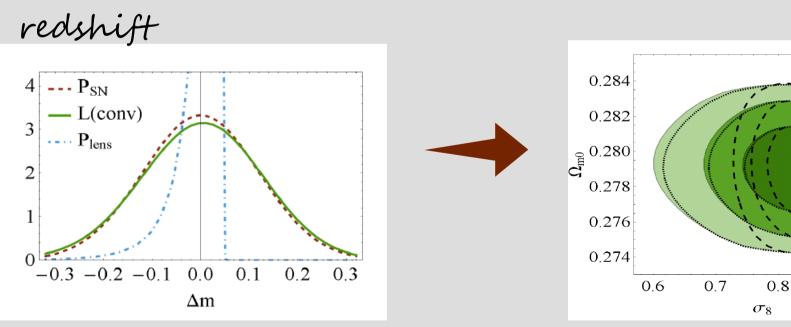
Using the closest 732 supernovae of the recent JLA catalog and the method of moments we show that a simple treatment of intrinsic non-Gaussianities with a couple of nuisance parameters is enough for make the first measurement σ_8 of using only SN data.

ArXiv:1403.monday

The road up until now:

• MeMo (Quartin et. al. 2013)

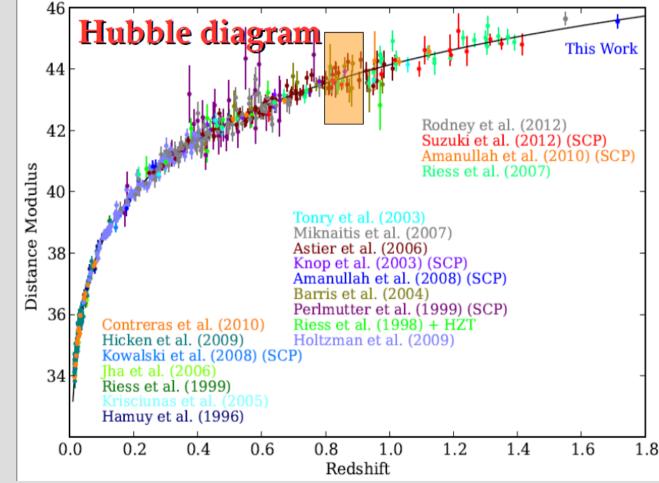
The road up until now:


- MeMo (Quartin et. al. 2013)
- · Gaussianity hypothesis

The road up until now:

- MeMo (Quartin et. al. 2013)
- · Gaussianity hypothesis
- Dependence of intrinsic SN dispersion on redshift

The road up until now:


- Memo (Quartin et. al. 2013)
- · Gaussianity hypothesis
- Dependence of intrinsic SN dispersion on

0.9

MeMo (Method of Moments) idea :

Parametrize
 and
 distinguish
 different PDF
 through their
 statistical
 moments

From this point forward :

• MeMo (Quartin et. al. 2013) ✓

From this point forward :

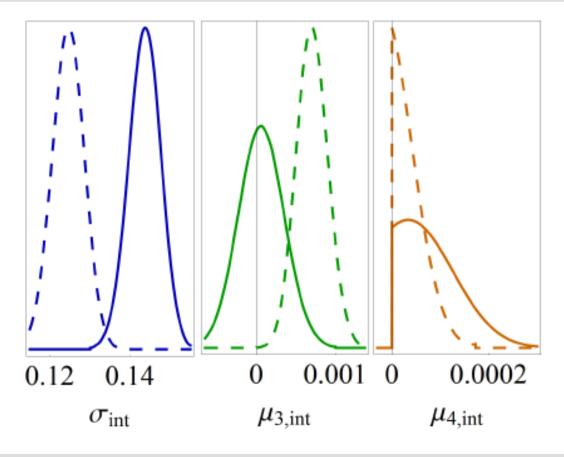
- MeMo (Quartin et. al. 2013) ✓
- · Gaussianity hypothesis
- Data demands intrinsic non-gaussianities 🗸

From this point forward :

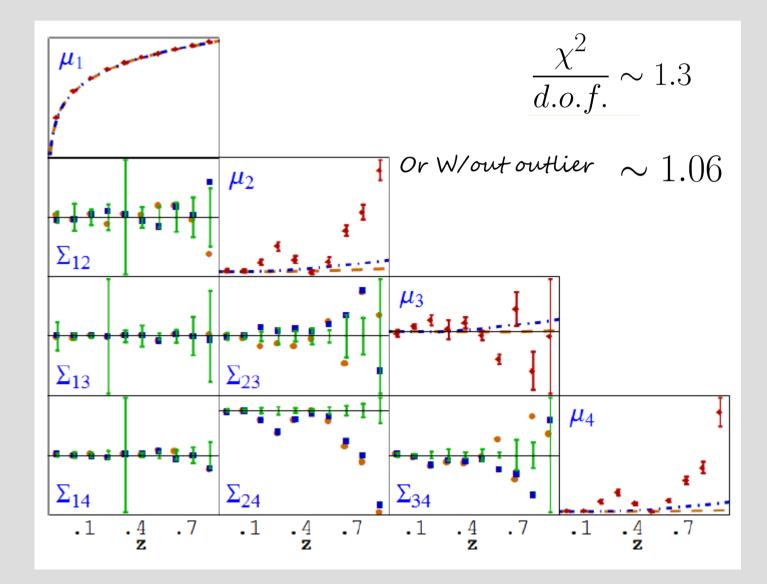
- MeMo (Quartin et. al. 2013) 🗸
- · Gaussianity hypothesis
- Data demands intrinsic non-gaussianities 🗸
- Dependence of intrinsic SN dispersion on redshift
 - Too many parameters 🗸
 - Simplistic choice of one nuisance parameter for each central moment

From this point forward :

- MeMo (Quartin et. al. 2013) 🗸
- · Gaussianity hypothesis
- Data demands intrinsic non-gaussianities 🗸
- Dependence of intrinsic SN dispersion on redshift
 - Too many parameters
 - Simplistic choice of one nuisance parameter
 for each central moment
- Low Statistic problems(*) ✓


Low statistics and Biased Estimators.

The low statistic problems that come up with current data are two-fold :


- In original incarnation MeMo used the limit of infinity SN in each bin to build the covariance matrix
- The usual amostral estimator of moments of a distribution is biased
- H-statistics gives the less dispersive unbiased estimator of central moments

Selecting the SN PDF Model : Goodness of fit

Both SNLS and JLA provided good fits showing no need for an intrinsic curtosis . . .

Selecting the SN PDF Model: Goodness of fit

Bayesian Selection Model:

In a nutshell:

• BSM is ruled by the Bayes Factor B_{01} (ratio of the evidences) and the Jeffrey's Scale

Evidence:

• From Bayes Theorem :

$$P(M|D) = \frac{P(D|M)P(M)}{P(D)}$$

- Evidence is the constant of normalization
 P(D)
- Does depend only on data, and carry the information about the predictivity and fit of the Model

Bayesian Selection Model:

In a nutshell :

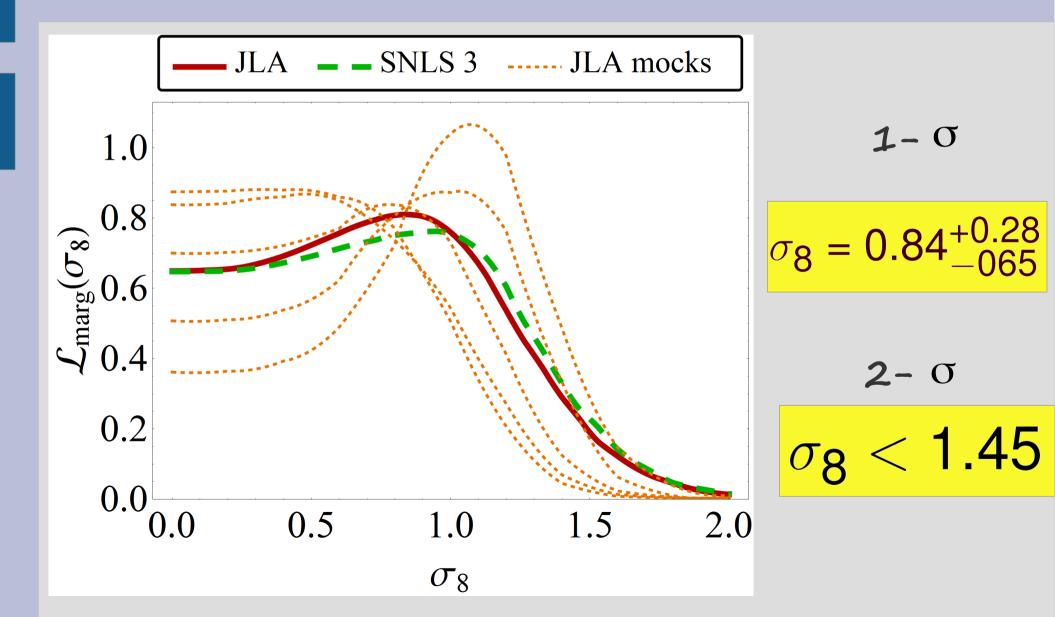
• BSM is ruled by the Bayes Factor B_{01} (ratio of the evidences) and the Jeffrey's Scale


$ \ln B_{01} $	Odds	Probability	Strength of evidence
$< 1.0 \\ 1.0 \\ 2.5 \\ 5.0$	$\begin{array}{l} \lesssim 3:1 \\ \sim 3:1 \\ \sim 12:1 \\ \sim 150:1 \end{array}$	$< 0.750 \\ 0.750 \\ 0.923 \\ 0.993$	Inconclusive Weak evidence Moderate evidence Strong evidence

Selecting the SN PDF Model : Bayesian Selection Model

And, aside of the first case, the choise of $\mu_{n,intr}(z)$ are discarted by Occam's Razor via BSM

	Hypothesis				
Data	Model 1	Model 2	$\ln B_{12}$	Probabilities	σ -level
μ_{1-2} (JLA)	const.	$\sigma_{\rm int}(z)$	-90	$1 - 10^{-41}$	13.5
μ_{1-4} (JLA)	const.	$\sigma_{ m int}(z) \ \& \ \mu_{3, m int}(z)$	60	$1-3 imes 10^{-16}$	8.1
μ_{1-4} (JLA)	fixed in best fit	const.	10.9	$1-4 imes 10^{-5}$	4.1
μ_{1-4} (DES)	const.	$\sigma_{\rm int}(z) \ \& \ \mu_{3,{ m int}}(z)$	190	$1-3\times 10^{-83}$	19


Results (1): Contours on Cosmological Parameters

Results (2): Power of detecting Lensing Signal of future and current data

Hy					
Data	$\sigma_{\rm int}$	$\mu_{3,\mathrm{int}}$	$\mu_{4,\mathrm{int}}$	$\ln B_{12}$	σ -lev.
μ_{1-2} (JLA)	$\sigma_{\rm int}(z)$			0.1	0.3
μ_{1-4} (JLA)	const.	const.	$\equiv 0$	0.45	0.9
μ_{1-4} (JLA)	$\sigma_{\rm int}(z)$	$\mu_{3,\mathrm{int}}(z)$	$\equiv 0$	0.17	0.7
μ_{1-2} (DES)	const.	_	_	1.4	1.3
μ_{1-3} (DES)	const.	const.	_	1.8	1.5
μ_{1-4} (DES)	const.	const.	$\equiv 0$	2.8	1.9
μ_{1-4} (DES)	$\sigma_{\rm int}(z)$	$\mu_{3,\mathrm{int}}(z)$	$\equiv 0$	0.7	1.0
μ_{1-4} (LSST100k)	const.	const.	$\equiv 0$	21	6.1

Results (3): First measure of σ_8 using just SN

Conclusions

- Using less nuisance parameters we made the method more robust
- Our hypothesis was prooved to be more suitable concerning both the goodness of fit and the BSM
- Our work represents an important proof of principle and a cross-check of theory
- First measure ever of σ_8 using just SN data

Conclusions

- Using less nuisance parameters we made the method more robust
- Our hypothesis was prooved to be more suitable concerning both the goodness of fit and the BSM
- Our work represents an important proof of principle and a cross-check of theory
- First measure ever of σ_8 using just SN data

Obrigado!